Write the equation of the sphere in standard form 2x2 + 2y2 + 2z2 = 4x - 16z + 1, Find its center and radius?
Solution:
The equation of the sphere in standard form is (x - a)2 + (y - b)2 + (z - c)2 = r2
Where C(a, b, c) is the center and r is the radius
Given: 2x2 + 2y2 + 2z2 = 4x - 16z + 1
Divide both sides by 2
x2 + y2 + z2 = 2x - 8z + 1/2
(x2 - 2x) + y2 + (z2 + 8z) = 1/2
(x2 - 2 x (1) x (x) + 12) - 12 + y2 + (z2 + 2 x 4 x (z) + 42) - 42 = 1/2
(x - 1)2 + y2 + (z + 4)2 = 1/2 + 1 + 16
Taking LCM
(x - 1)2 + y2 + (z + 4)2 = (1 + 2 + 32) / 2
(x - 1)2 + y2 + (z + 4)2 = 35/2
(x - 1)2 + y2 + (z + 4)2 = √(35/2)2
Therefore, the equation of the sphere in standard form is (x - 1)2 + y2 + (z + 4)2 = √(35/2)2.
Write the equation of the sphere in standard form 2x2 + 2y2 + 2z2 = 4x - 16z + 1, Find its center and radius?
Summary:
The equation of the sphere in standard form 2x2 + 2y2 + 2z2 = 4x - 16z + 1 is (x - 1)2 + y2 + (z + 4)2 = √(35/2)2, its center = (1, 0, -4) and radius is √(35/2).
visual curriculum