Use distributive property to find (x4 - 3x3 + 3x2 - 3x + 6) (x - 2).
Distributive Property Formula is given by a × (b + c) = a × b + a × c
Solution:
Distributive Property Formula is given by a × (b + c) = a × b + a × c
(x4 - 3x3 + 3x2 - 3x + 6) (x - 2) = x × (x4 - 3x3 + 3x2 - 3x + 6) - 2 × (x4 - 3x3 + 3x2 - 3x + 6)
= x5 - 3x4 + 3x3 - 3x2 + 6x - 2x4 + 6x3 - 6x2 + 6x - 12
= x5 - 5x4 + 9x3 - 9x2 + 12x - 12
Thus, using the distributive property of multiplication, we get (x4 - 3x3 + 3x2 - 3x + 6) (x - 2) = x5 - 5x4 + 9x3 - 9x2 + 12x - 12
Use distributive property to find (x4 - 3x3 + 3x2 - 3x + 6) (x - 2).
Summary:
Using distributive property we get (x4 - 3x3 + 3x2 - 3x + 6)(x - 2) = x5 - 5x4 + 9x3 - 9x2 + 12x - 12.
Math worksheets and
visual curriculum
visual curriculum