# Divide as directed.

(i) 5(2x +1)(3x + 5) ÷ (2x +1) (ii) 26xy(x + 5)(y - 4) ÷ 13x( y - 4)

(iii) 52 pqr(p + q)(q + r)(r + p) ÷ 104pq(q + r)(r + p)

(iv) 20(y + 4) (y^{2} + 5y + 3) ÷ 5(y + 4)

(v) x(x +1)(x + 2)(x + 3) ÷ x(x +1)

**Solution:**

We will find the factors of the algebraic expression then cancel out common factors of the numerator and denominator.

(i) 5(2x +1)(3x + 5) ÷ (2x +1)

= 5(2x +1)(3x + 5) / (2x +1)

= 5(3x + 5)

(ii) 26xy(x + 5)(y - 4) ÷ 13x(y - 4)

= 2 × 13 × xy(x + 5)(y - 4) / 13x(y - 4)

= 2y(x + 5)

(iii) 52pqr (p + q)(q + r)(r + p) ÷ 104pq(q + r)(r + p)

= 2 × 2 × 13 × p × q × r × ( p + q) × (q + r) × (r + p) / 2 × 2 × 2 × 13 × p × q × (q + r) × (r + p)

= r(p + q) / 2

(iv) 20(y + 4) (y^{2} + 5y + 3) ÷ 5(y + 4)

= 2 × 2 × 5 × (y + 4) × (y^{2} + 5 y + 3) / 5 × (y + 4)

= 4(y^{2} + 5 y + 3)

(v) x(x +1)(x + 2)(x + 3) ÷ x(x +1)

= (x + 2)(x + 3)

**☛ Check: **NCERT Solutions for Class 8 Maths Chapter 14

**Video Solution:**

## Divide as directed. (i) 5(2x +1)(3x + 5) ÷ (2x +1) (ii) 26xy(x + 5)(y - 4) ÷ 13x( y - 4) (iii) 52 pqr(p + q)(q + r)(r + p) ÷ 104pq(q + r)(r + p) (iv) 20(y + 4) (y² + 5y + 3) ÷ 5(y + 4) (v) x(x +1)(x + 2)(x + 3) ÷ x(x +1)

Class 8 Maths NCERT Solutions Chapter 14 Exercise 14.3 Question 4

**Summary:**

The following expressions are divided (i) 5(2x +1)(3x + 5) ÷ (2x +1) (ii) 26xy(x + 5)(y - 4) ÷ 13x( y - 4) (iii) 52 pqr(p + q)(q + r)(r + p) ÷ 104pq(q + r)(r + p) (iv) 20(y + 4) (y^{2} + 5y + 3) ÷ 5(y + 4) (v) x(x +1)(x + 2)(x + 3) ÷ x(x +1) and the results are (i) 5(3x + 5) (ii)2y(x + 5) (iii) r(p + q) / 2 (iv) 4(y^{2} + 5 y + 3) (v) (x + 2)(x + 3)

**☛ Related Questions:**

visual curriculum