Find the sum of the following series up to n terms: 1³/1 + (1³ + 2³)/(1 + 3) + (1³ + 2³ + 3³)/(1 + 3 + 5) + ....
Solution:
The nth term of the given series 13/1 + (13 + 23)/(1 + 3) + (13 + 23 + 33)/(1 + 3 + 5) + .... is
an = (13 + 23 + 33 + .... n3) / [1 + 3 + 5 + .... + (2n - 1)]
= [n (n +1)/2]2 / [1 + 3 + 5 + .... + (2n - 1)] (Using the summation formulas)
Here, 1, 3, 5, .... (2n - 1) is an A.P. with first term a , common difference 2, last term (2n - 1) and number of terms n.
Therefore,
1 + 3 + 5 + .... + (2n - 1) = n/2 [2 x 1 + (n - 1)2] = n2
Hence,
an = n2 (n + 1)2/4n2
= (n2 + 2n + 1)/4
= 1/4 (n2) + 1/2 (n) + 1/4
Thus,
Sn = ∑nₖ ₌ ₁(a)k
= ∑nₖ ₌ ₁(1/4 (k2) + 1/2 (k) + 1/4)
= 1/4 [n (n + 1)(2n + 1)/6] + 1/2 [n(n + 1)/2] + 1/4 x n
= n [(n + 1)(2n + 1) + 6 (n + 1) + 6]/24
= n [2n2 + 3n + 1 + 6n + 6 + 6]/24
= n/24 (2n2 + 9n + 13)
NCERT Solutions Class 11 Maths Chapter 9 Exercise ME Question 25
Find the sum of the following series up to n terms: 1³/1 + (1³ + 2³)/(1 + 3) + (1³ + 2³ + 3³)/(1 + 3 + 5) + ....
Summary:
The sum of the following series 1³/1 + (1³ + 2³)/(1 + 3) + (1³ + 2³ + 3³)/(1 + 3 + 5) + .... up to n terms is n/24 (2n2 + 9n + 13)
visual curriculum