Find the value of a in (5 + 2√3) / (7 + 4√3) = a - 6√3
Solution:
Given, the expression is (5 + 2√3) / (7 + 4√3) = a - 6√3
We have to find the value of a.
Considering LHS,
LHS: (5 + 2√3) / (7 + 4√3)
By taking conjugate,
(5 + 2√3) / (7 + 4√3) = (5 + 2√3) / (7 + 4√3) × (7 - 4√3) / (7 - 4√3)
= (5 + 2√3)(7 - 4√3) / (7 + 4√3)(7 - 4√3)
By using algebraic identity,
(a² - b²) = (a - b)(a + b)
(7 + 4√3)(7 - 4√3) = (7)² - (4√3)²
= 49 - 16(3)
= 49 - 48
= 1
So, (5 + 2√3)(7 - 4√3) / (7 + 4√3)(7 - 4√3) = (5 + 2√3)(7 - 4√3) / (1)
= (5 + 2√3)(7 - 4√3)
By multiplicative and distributive property,
(5 + 2√3)(7 - 4√3) = 5(7) - 5(4√3) + 7(2√3) - 2√3(4√3)
= 35 - 20√3 + 14√3 - 8(3)
= 35 - 24 - 20√3 + 14√3
= 11 - 6√3
So, 11 - 6√3 = a - 6√3
By grouping,
11 - 6√3 + 6√3 = a
a = 11
Therefore, the value of a is 11.
✦ Try This: Find the values of a² + b² if a = 1/(7 - 4√3) and b = 1/(7 + 4√3)
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 1
NCERT Exemplar Class 9 Maths Exercise 1.3 Problem 11(i)
Find the value of a in (5 + 2√3) / (7 + 4√3) = a - 6√3
Summary:
Rationalization can be considered as the process used to eliminate a radical or an imaginary number from the denominator of an algebraic fraction.The value of a in (5 + 2√3) / (7 + 4√3) = a - 6√3 is 11
☛ Related Questions:
visual curriculum