Prove that tan- 1 (√1 + x - √1 - x)/(√1 + x + √1 - x) = π/2 - 1/2 cos- 1 x, - 1/√2 ≤ x ≤ 1
Solution:
Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios
Here the basic trigonometric function of Sin θ = y, can be changed to θ = sin-1 y
Let x = cos 2θ
⇒ θ = 1/2 cos- 1 x
Thus,
LHS = tan- 1 (√1 + x - √1 - x) / (√1 + x + √1 - x)
= tan- 1 (√1 + cos 2θ - √1 - cos 2θ) / (√1 + cos 2θ + √1 - cos 2θ)
= tan- 1 (√2 cos² θ - √2 sin² θ) / (√2 cos² θ + √2 sin² θ)
= tan- 1 (√2 cos θ - √2 sinθ) / (√2 cosθ + √2 sin θ)
= tan- 1 [(cos θ - sin θ) / (cos θ + sin θ)]
= tan- 1 [(1 - tanθ) / (1 + tan θ)]
= tan- 1 (1) + tan- 1 (tan θ)
= π/4 - θ
= π/4 - 1/2 cos- 1 x
= RHS
Hence, LHS = RHS
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise ME Question 11
Prove that tan- 1 (√1 + x - √1 - x)/(√1 + x + √1 - x) = π/2 - 1/2 cos- 1 x, - 1/√2 ≤ x ≤ 1.
Summary:
Hence we have proved by using inverse trigonometric functions that tan- 1 (√1 + x - √1 - x)/(√1 + x + √1 - x) = π/2 - 1/2 cos- 1 x, - 1/√2 ≤ x ≤ 1
visual curriculum