Show that [1 x 2² + 2 x 3² + .... + n x (n + 1)²] / [1² x 2 + 2² x 3 + .... + n² x (n + 1)] = (3n + 5) / (3n + 1)
Solution:
The nth term of the given series 1 x 22 + 2 x 32 + .... + n x (n + 1)2
aₙ = n (n + 1)2 = n3 + 2n2 + n
The nth term of the given series 12 x 2 + 22 x 3 + .... + n2 x (n + 1) in denominator
aₙ = n2 (n + 1) = n3 + n2
Therefore,
[1 x 2² + 2 x 3² + .... + n x (n + 1)²] / [1² x 2 + 2² x 3 + .... + n² x (n + 1)] = ∑nₖ ₌ ₁(a)ₖ / ∑nₖ ₌ ₁(a)ₖ
= ∑nₖ ₌ ₁(k3 + 2k2 + k) / ∑nₖ ₌ ₁(k3 + k2) ....(1)
Using the summation formulas, we will calculator each of the above series.
∑nₖ ₌ ₁(k3 + 2k2 + k) = n2 (n + 1)2/4 + 2n (n + 1)(2n + 1)/6 + n (n + 1)/2
= n (n + 1)/2 [n (n + 1)/2 + 2/3 (2n + 1) + 1]
= n (n + 1)/2 [(3n2 + 3n + 8n + 4 + 6)/6]
= n (n + 1)/12 [3n2 + 11n + 10]
= n (n + 1)/12 [3n2 + 6n + 5n + 10]
= n (n + 1)/12 [3n (n + 2) + 5(n + 2)]
= [n (n + 1)(n + 2)(3n + 5)]/12 ....(2)
Also,
∑nₖ ₌ ₁(k3 + k2) = [n2 (n + 1)2]/4 + [n (n + 1)(2n + 1)]/6
= n (n + 1)/2 [n (n + 1)/2 + (2n + 1)/3]
= n (n + 1)/2 [3n2 + 3n + 4n + 2]
= n (n + 1)/12 [3n2 + 7n + 2]
= n (n + 1)/12 [3n2 + 6n + n + 2]
= n (n + 1)/12 [3n (n + 2) +1(n + 2)]
= n (n + 1)(n + 2)(3n + 1)/12 ....(1)
From (1), (2) and (3) , we obtain
[1 x 2² + 2 x 3² + .... + n x (n + 1)²] / [1² x 2 + 2² x 3 + .... + n² x (n + 1)]
= {[n (n + 1)(n + 2)(3n + 5)]/12} / {n (n + 1)(n + 2)(3n + 1)/12}
= (3n + 5)/(3n + 1)
Hence proved
NCERT Solutions Class 11 Maths Chapter 9 Exercise ME Question 26
Show that [1 x 2² + 2 x 3² + .... + n x (n + 1)²] / [1² x 2 + 2² x 3 + .... + n² x (n + 1)] = (3n + 5) / (3n + 1)
Summary:
We have proved that [1 x 2² + 2 x 3² + .... + n x (n + 1)²] / [1² x 2 + 2² x 3 + .... + n² x (n + 1)] = (3n + 5) / (3n + 1)
visual curriculum