Solve: sin- 1 (1 - x) - 2 sin- 1 x = π/2, then x is equal to:
(A) 0, 1/2 (B) 1, 1/2 (C) 0 (D) 1/2
Solution:
Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios
Here the basic trigonometric function of Sin θ = y, can be changed to θ = sin-1 y
It is given that sin- 1 (1 - x) - 2 sin- 1 x = π/2
⇒ sin- 1 (1 - x) - 2 sin- 1 x = π/2
⇒ - 2 sin- 1 x = π/2 - sin- 1 (1 - x)
⇒ - 2 sin- 1 x = cos- 1 (1 - x) ....(1)
Let sin- 1 x = y ⇒ sin y = x
Hence,
cos y = √1 - x²
y = cos-1 (√1 - x²)
sin- 1 x = cos- 1 (√1 - x²)
From equation (1), we have
- 2 cos- 1 (√1 - x²) = cos- 1 (1 - x)
Put x = sin y
⇒ - 2 cos- 1 √1 - sin² y = cos- 1 (1- sin y)
⇒ - 2 cos- 1 (cos y ) = cos- 1 (1 - sin y)
⇒ - 2 y = cos- 1 (1 - sin y)
⇒ 1 - sin y = cos(- 2y)
⇒ 1 - sin y = cos 2y
⇒ 1 - sin y = 1 - 2 sin2 y
⇒ 2 sin2 y - sin y = 0
⇒ sin y (2 sin y - 1) = 0
⇒ sin y = 0, 1/2
Therefore,
x = 0, 1/2
When x = 1/2, it does not satisfy the equation.
Hence, x = 0 is the only solution
Thus, the correct option is C
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise ME Question 16
Solve: sin- 1 (1 - x) - 2 sin- 1 x = π/2, then x is equal to: (A) 0, 1/2 (B) 1, 1/2 (C) 0 (D) 1/2
Summary:
For the function: sin- 1 (1 - x) - 2 sin- 1 x = π/2, the value of x is 0.Thus, the correct option is C
visual curriculum