The ratio of the A.M and G.M of two positive numbers a and b, is m : n. Show that a : b = (m + √m² - n²) : (m - √m² - n²)
Solution:
Let the two numbers be a and b.
A.M = (a + b)/2
G.M = √ab
According to the given condition,
⇒ (a + b) / (2√ab) = m/n
Squaring on both sides,
⇒ (a + b)2/4ab = m2/n2
⇒ (a + b)2 = 4abm2/n2
⇒ (a + b) = 2m√ab/n ....(1)
Using this in the identity (a - b)2 = (a + b)2 - 4ab, we obtain
⇒ (a - b)2 = 4abm2/n2 - 4ab
⇒ (a - b)2 = 4ab (m2 - n2)/n2
⇒ (a - b) = 2√ab √m² - n²/n
Adding (1) and (2), we obtain
2a = (2√ab)/n (m + √m² - n²)
a = (√ab)/n (m + √m² - n²)
Substituting the value of a in (1) , we obtain
b = (2√ab)/n x m - (√ab)/n x (m + √m² - n²)
= (√ab)/n x m - (√ab)/n x (√m² - n²)
= (√ab)/n (m - √m² - n²)
Therefore,
a/b = [(√ab)/n (m + √m² - n²)] / [(√ab)/n (m - √m² - n²)]
= (m + √m² - n²) / (m - √m² - n²)
Thus, a : b = (m + √m² - n²) : (m - √m² - n²)
NCERT Solutions Class 11 Maths Chapter 9 Exercise ME Question 19
The ratio of the A.M and G.M of two positive numbers a and b , is m : n. Show that a : b = (m + √m² - n²) : (m - √m² - n²)
Summary:
It was known that the ratio of A.M and G.M of two positive numbers a and b is m:n we showed that a : b = (m + √m² - n²) : (m - √m² - n²)
visual curriculum