Write the function in the simplest form : tan-1[(√1 + x²) - 1]/x, x ≠ 0
Solution:
Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios.
Here the basic trigonometric function of Sin θ = y can be changed to θ = sin-1 y
Let x = tan θ
⇒ θ = tan- 1 x
Hence,
tan- 1 [(√1 + x²) - 1] / x
= tan- 1 (√1 + tan ²θ) - 1) / tan θ
= tan- 1 (secθ - 1) / tanθ
= tan- 1 (1 - cosθ) / sinθ
= tan- 1 (2 sin2 θ / 2) / (2 sinθ / 2 cos θ)
= tan- 1 (tanθ / 2)
= θ / 2
= 1/2 tan- 1 x
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise 2.2 Question 5
Write the function in the simplest form : tan-1[(√1 + x²) - 1]/x, x ≠ 0
Summary:
The function in the simplest form : tan-1[(√1 + x²) - 1]/x, x ≠ 0 can be expressed as 1/2 tan- 1 x
Math worksheets and
visual curriculum
visual curriculum