Write the function in the simplest form : tan- 1 (3a2 x - x3)/(a3 - 3ax2), a > 0; - a/√3 ≤ x ≤ a/√3
Solution:
Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios.
Here the basic trigonometric function of Sin θ = y can be changed to θ = sin-1 y
Let,
x = a tan θ
⇒ θ = tan-1 (x/a)
tan- 1 (3a2 x - x3)/(a3 - 3ax2)
Using trigonometric identity
= tan- 1 (3a2 × a tan θ - a3 tan3 θ) / (a3 - 3a.a2 tan2 θ)
= tan- 1 (3a3 tanθ - a3 tan3 θ) / (a3 - 3a3 tan2 θ)
= tan- 1 (tan 3θ)
= 3 θ
On substituting the value of θ, we get
= 3 tan- 1 x/a
Therefore,
tan- 1 (3a2 x - x3)/(a3 - 3ax2) = 3 tan- 1 x/a
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise 2.2 Question 10
Write the function in the simplest form : tan- 1 (3a2 x - x3)/(a3 - 3ax2), a > 0; - a/√3 ≤ x ≤ a/√3
Summary:
The function in the simplest form : tan- 1 (3a2 x - x3)/(a3 - 3ax2), a > 0; - a/√3 ≤ x ≤ a/√3 can be written as 3 tan- 1 x/a
Math worksheets and
visual curriculum
visual curriculum