Describe the x-values at which the function is differentiable. (enter your answer using interval notation.) y = |x2 - 25|
Solution:
Given, y = |x2 - 25|
{x2 - 25 if x ϵ (-∞, -5) U (5, ∞)
y = {0 if x = 5/-5
{25 - x2 if x ϵ (-5, 5)
Case (i): Differentiability at x = 5
L.H.D = limx→5⁻ [(f(x) - f(5)) / (x - 5)]
= limx→5⁻ [((25 - x2) - 0) / (x - 5)]
= limx→5⁻ [((5 - x)(5 + x)) / (x - 5)]
= limx→5⁻ -(5 + x)
= -(5 + 5)
= -10
R.H.D = limx→5+ [(f(x) - f(5)) / (x - 5)]
= limx→5+ [((x2 - 25) - 0) / (x - 5)]
= limx→5+ [((x + 5)(x - 5)) / (x - 5)]
= limx→5+ (x + 5)
= (5 + 5)
= 10
⇒ L.H.D ≠ R.H.D
∴ f(x) is not differentiable at x = 5.
Case (ii) : Differentiability at x = -5
L.H.D = limx→5- [(f(x) - f(-5)) / (x - (-5))]
= limx→5- [((x2 - 25) - 0) / (x + 5)]
= limx→5- [((x + 5)(x - 5)) / (x + 5)]
= limx→5- (x - 5)
= -5 - 5
= -10
R.H.D = limx→5+ [(f(x) - f(-5)) / (x - (-5))]
= limx→5+ [((25 - x2) - 0) / (x + 5)]
= limx→5+ [((5 - x)(5 + x)) / (x + 5)]
= 5 - (-5)
= 10
⇒ L.H.D ≠ R.H.D
∴ f(x) is differential in (-∞, ∞) - {5, -5}
Note:
⃒f(x)⃒ is not differentiable for all those values of ‘x’ at which f(x) = 0.
Given function |x2 - 25|, f(x) = x2 - 25 is zero for x = 5 and x = -5
∴ f(x) is not differentiable at x = 5 and x = -5.
Describe the x-values at which the function is differentiable. (enter your answer using interval notation.) y = |x2 - 25|
Summary:
The x-values at which the function y = |x2 - 25| is differentiable is, in (-∞, ∞) - {5, -5}.
visual curriculum