Evaluate the integral. (use c for the constant of integration.) ln(x) dx
Solution:
Given ∫ ln (x) dx = ∫ ln (x) . 1 dx
We use integration by parts to solve it i.e., ∫ u.v dx
= u ∫ v dx - ∫ [du/dx × ∫ v dx] dx
And to select the u and v we use the rule LIATE
I - Inverse trigonometric
A - Algebraic function
T - Trigonometric function
∫ ln (x) .(1) dx
Here u = ln(x), v =1
= ln (x) ∫(1) dx - ∫[d(log x)/dx . ∫ 1. dx] dx
= ln (x) . x - ∫ (1/x). x .dx
= x ln(x) - x + C
Evaluate the integral. (use c for the constant of integration.) ln(x) dx
Summary:
Integral of ln(x) dx using c for the constant of integration is x ln(x) - x + C
Math worksheets and
visual curriculum
visual curriculum