Find a + b, 9a + 7b, |a|, and |a - b|. a = 9i - 8j + 7k, b = 7i - 9k
Solution:
a and b are the two given vectors. We will use the values of a and b to find a + b, 9a + 7b, |a|, and |a - b|.
Let us solve these.
1) a + b
Here we are adding two vectors.
⇒ 9i - 8j + 7k + (7i - 9k)
Add the like terms,
16i - 8j - 2k
2) 9a + 7b
⇒ 9(9i - 8j + 7k) + 7(7i - 9k)
⇒ 81i - 72j + 63k + 49i - 63k
Add the like terms,
⇒ 130i - 72j
3) |a|
|a| = a if a ≥ 0 and |a| = - a if a < 0.
Since, |a| = √a2 which represents the unique positive number. Using this magnitude formula
⇒ |a| = √ (x2 + y2 + z2) where x = 9i, y = 8j and z = 7k
⇒ |a| = √92 + 82 + 72
⇒ |a| = √81 + 64 + 49
⇒ |a| = √194
⇒ |a| = 13.92
4) |a - b|.
Here we are subtracting two vectors.
|a - b| = (a - b) if a - b ≥ 0 and |a| = - (a- b) if a - b < 0.
Since, |a- b| = √(a - b)2 which represents the unique positive number,
a - b = 9i - 8j + 7k - (7i - 9k)
a - b = 9i - 8j + 7k - 7i + 9k
a - b = 2i - 8j + 16k
⇒ |a - b| = √ (x2 + y2 + z2) where xi = 2, yi = 8 and zi = 16k
⇒ |a - b| = √22 + 82 + 162
⇒ |a - b| = √4 + 64 + 256
⇒ |a - b| = √324
⇒ |a - b| = 18
Find a + b, 9a + 7b, |a|, and |a - b|. a = 9i - 8j + 7k, b = 7i - 9k
Summary:
The values of a + b = 16i - 8j - 2k, 9a + 7b = 130i - 72j, |a| = 13.92, and |a - b| = 18,if a = 9i - 8j + 7k, b = 7i - 9k.
visual curriculum