Find sin(2x), cos(2x), and tan(2x) from the given information. csc(x) = 8, tan(x) < 0
Solution:
Given, cosec (x) = 8
We know, sin (x) = 1/cosec (x) = 1/8
cos2x = 1 - sin2x
cos2x = 1 - (1/8)2
= 1 - 1/64
= (64 - 1)/64
= 63/64
Taking square root,
cos (x) = 3√7/8
sin 2x = 2 sinx cosx
sin 2x = 2(1/8)(3√7/8)
sin 2x = 3√7/32
cos 2x = 2cos2x - 1
= 2(63/64) - 1
= (63/32) - 1
= (63 - 32)/32
cos 2x = 31/32
tan 2x = sin 2x / cos 2x
= (3√7/32)/(31/32)
= 3√7/31
Therefore, sin(2x) = 3√7/32, cos(2x) = 31/32 and tan(2x) = 3√7/31.
Find sin(2x), cos(2x), and tan(2x) from the given information. csc(x) = 8, tan(x) < 0
Summary:
From the given information, csc(x) = 8, tan(x) < 0 sin(2x) = 3√7/32, cos(2x) = 31/32 and tan(2x) = 3√7/31.
Math worksheets and
visual curriculum
visual curriculum