from a handpicked tutor in LIVE 1-to-1 classes
Find the arc length function for the curve y = 2x3/2 with starting point P(9, 54).
Solution:
Given, y = \(2x^{\frac{3}{2}}\)
Starting point P(9, 54)
Differentiating with respect to x,
dy/dx = d(\(2x^{\frac{3}{2}}\))/dx
dy/dx = 2(3/2)\(x^{\frac{1}{2}}\)
dy/dx = 3\(x^{\frac{1}{2}}\) -------------------- (1)
The arc length can be found by using the formula,
\(L=\int_{x_{0}}^{t}\sqrt{[1+(\frac{dy}{dx})^2]dx}\)
Putting the value of dy/dx in the formula,
\(L=\int_{1}^{t}\sqrt{[1+(3x^{\frac{1}{2}})^2]dx}\)
\(L=\int_{1}^{t}\sqrt{(1+9x)dx}\)
Let 1 + 9x = z
9dx = dz
dx = dz / 9
At x = 9,
z = 1 + 9(9)
z = 1 + 81
z = 82
At x = t,
z = 1 + 9t
Putting the value of z and dz in the above equation, we get
\(L=\int_{82}^{1+9t}\frac{z^{\frac{1}{2}}}{9}\, dz\)
\(L=[\frac{z^{\frac{3}{2}}}{9.\frac{3}{2}}]_{10}^{1+9t}\)
\(L=\frac{2}{27}[z^{\frac{3}{2}}]_{82}^{1+9t}\)
\(L=\frac{2}{27}[(1+9t)^{\frac{3}{2}}-(82)^{\frac{3}{2}}]\)
Therefore, the arc length of the given curve is
\(L=\frac{2}{27}[(1+9t)^{\frac{3}{2}}-(82)^{\frac{3}{2}}]\).
Find the arc length function for the curve y = 2x3/2 with starting point P(9, 54).
Summary:
The arc length function for the curve y = 2x3/2 with starting point P(9, 54) is \(L=\frac{2}{27}[(1+9t)^{\frac{3}{2}}-(82)^{\frac{3}{2}}]\).
visual curriculum