Find the exact values of sin(u/2), cos(u/2), and tan(u/2) using the half-angle formulas.
sec (u) = -5/2 π/2 < u < π
Solution:
Given that:
sec (u) = -5/2
cos (u) = -2/5
We know the trigonometric laws:
2cos²(u/2) = 1 + cosu
2sin²(u/2) = 1 - cosu
2cos²(u/2) = 1 - 2/5 = 3/5
cos²(u/2) = 3/10
cos(u/2) = √3/10
Since u is in Quadrant I, then cos(u/2) is positive.
2sin²(u/2) = 1 + 2/5 = 7/5
sin²(u/2) = 7/10
sin(u/2) = √7/10
Since u is in Quadrant I, then sin(u/2) is positive.
tan(u/2) = sin/cos =√7/3
Find the exact values of sin(u/2), cos(u/2), and tan(u/2) using the half-angle formulas. sec (u) = -5/2 π/2 < u < π
Summary:
The exact values of sin(u/2), cos(u/2), and tan(u/2) using the half-angle formulas. sec (u) = -5/2 π/2 < u < π are √7/10 , √3/10, √7/3 respectively.
Math worksheets and
visual curriculum
visual curriculum