Find the length of the curve r(t) = 9t, 3 cos(t), 3 sin(t) , -3 ≤ t ≤ 3?
Solution:
r(t) = 9t, 3 cos(t), 3 sin(t) [Given]
We know that
r(t) = (x, y, z)
So we get
x = 9t
y = 3 cos(t)
z = 3 sin(t)
The arc length formula can be used
\( L = \int_{a}^{b}\sqrt{(x')^{2}+(y')^{2}+(z')^{2}}dt \)
We know that the derivatives are
x’ = 9
y’ = -3 sin (t)
z’ = 3 cos (t)
Now substitute these values
\( \\L =\int_{-3}^{3}\sqrt{(9)^{2}+(-3 \sin t)^{2}+(3 \cos t)^{2}}dt \\=\int_{-3}^{3}\sqrt{9^{2}+9}dt \\ =\int_{-3}^{3}3\sqrt{10}dt \\ =3\sqrt{10}t|^{3}_{-3}\\L=18\sqrt{10} \)
Therefore, the length of the curve is 18√10.
Find the length of the curve r(t) = 9t, 3 cos(t), 3 sin(t) , -3 ≤ t ≤ 3?
Summary:
The length of the curve r(t) = 9t, 3 cos(t), 3 sin(t) , -3 ≤ t ≤ 3 is 18√10.
Math worksheets and
visual curriculum
visual curriculum