from a handpicked tutor in LIVE 1-to-1 classes
Find the length of the curve. r(t) = cos(5t) i + sin(5t) j + 5 ln(cos(t)) k, 0 ≤ t ≤ π/4.
Solution:
Given r(t) = cos(5t) i + sin(5t) j + 5 ln(cos(t)) k
r(t) is a parametric equation of t .
Also if r(t): R→R3 is a vector valued function of a real variable with independent scalar output variables x, y & z
r(t) = {x, y, z}
Where x = cos(5t) , y = sin(5t) and z = 5ln cos(t)
Length of the curve, S = \(\int_{0}^{π/4} \sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2}dt\)
Consider
x = cos(5t) ⇒ dx/dt = -5sin(5t)
y = sin(5t) ⇒ dy/dt = 5cos(5t)
z = 5 ln(cos(t)) ⇒ dz/dt = (4/cos(t)) × (-sin(t))
dz/dt = -5(tant)
(dx/dt)2 + (dy/dt)2 + (dz/dt)2 = (-5sin(5t))2 + (5cos(5t))2 + (-5(tant))2
= 25sin2(5t) + 25cos2(5t) + 25tan2(t)
= 25[sin2(5t) + cos2(5t)] + tan2(t))
= 25(1+ tan2(t))[Since sin2t + cos2t= 1]
⇒ (dx/dt)2 + (dy/dt)2 + (dz/dt)2 = 25sec2(t)
⇒ \(\sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2}dt\) = √25sec2(t)
= √(5sec(t))2
= 5sec(t)
S = \(\int_{0}^{π/4} 5sec(t)\,dt\)
∫sec(t)= ln[sect + tant]
S = 5ln(sect + tant)]\(_{0}^{π/4}\)
= 5[ln(sec(π/4) + tan(π/4))] - 5 [ln(sec(0) + tan(0))]
= 5[ln(√2 + 1) - ln(1 + 0)]
= 5[ln (√2 +1 )] - 0
S = 5[ln(√2 + 1)]
Find the length of the curve. r(t) = cos(5t) i + sin(5t) j + 5 ln(cos(t)) k, 0 ≤ t ≤ π/4.
Summary:
The length of the curve. r(t) = cos(5t) i + sin(5t) j + 5 ln(cos (t)) k, 0 ≤ t ≤ π / 4 is 5[ln(√2 + 1)]
visual curriculum