Find the possible value or values of y in the quadratic equation 4 - 4y - y2 = 0.
Solution:
Quadratic equation 4 - 4y - y2 = 0 [Given]
It can be written as
- y2 - 4y + 4 = 0
Using the quadratic formula
\( y=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a} \)From the equation we know that
a = - 1, b = - 4 and c = 4
\( y=\frac{-(-4)\pm \sqrt{(-4)^{2}-4\times -1\times 4}}{2\times -1} \)
By further calculation
\( y=\frac{4\pm \sqrt{16+16}}{-2} \)
\( y=\frac{4\pm 4\sqrt{2}}{-2} \)
Taking out 2 as common
\( y=\frac{2(2\pm 2\sqrt{2})}{-2} \)
So we get
y = - (2 ± 2√2)
y = - (2 + 2√2) and y = - (2 - 2√2)
y = - 2 - 2√2 and y = - 2 + 2√2
Therefore, the possible values of y are - 2 - 2√2 and - 2 + 2√2.
Find the possible value or values of y in the quadratic equation 4 - 4y - y2 = 0.
Summary:
The possible value or values of y in the quadratic equation 4 - 4y - y2 = 0 are - 2 - 2√2 and - 2 + 2√2.
Math worksheets and
visual curriculum
visual curriculum