How do you integrate cos2 x by integration by parts method?
Integration by parts is a method used for integrating the functions in multiplication. To integrate ∫ cos2 x, we will write cos2 x = cos x × cos x.
Answer: cos2 x by integration by parts method gives 1/2 ( cos x × sin x ) + x/2 + C
Let's integrate ∫ cos2 x dx.
Explanation:
To integrate ∫ cos2 x dx, assume I = ∫ cos2 x dx.
I = ∫ cos2 x dx
I = ∫ cos x × cos x dx
We know that ∫ (u × v) dx = u ∫ v dx - ∫ ( u' ∫ v dx) dx
u = cos x , v = cos x
I = cos x × sin x - ∫ [(- sin x) × sin x] dx
I = cos x × sin x + ∫ (sin2 x) dx
I = cos x × sin x + ∫ (1 - cos2 x) dx
I = cos x × sin x + ∫ 1 dx - ∫ (cos2 x) dx
I = cos x × sin x + x - I + c, ∵ I = ∫ (cos2 x) dx
On solving this we get,
2I = cos x × sin x + x + c
I = 1/2 (cos x × sin x) + x/2 + c
Thus, the integral of ∫ cos2 x is 1/2 (cos x × sin x) + x/2 + c
Math worksheets and
visual curriculum
visual curriculum