How do you prove: Sin3θ = 3Sinθ−4Sin3θ?
Trigonometric functions (also called circular functions or angle functions) are real functions that relate an angle of a right-angled triangle to the ratio of the other two side lengths.
Answer: Sin3θ = 3sinθ - 4sin3θ
Let us analyse this problem step by step
Explanation:
We can use the trigonometric formula,
sin (x+y) = sin x cos y + cos x sin y
x = 2θ and y = θ [ 3θ can be written as sum of θ and 2θ]
Substituting the values of x and y we get,
sin(2θ+θ) = sin2θ cosθ + cos2θ sinθ
⇒ sin3θ = (2sinθcosθ)cosθ + (cos2θ - sin2θ )sinθ [Since, sin 2x = 2 sin x cos x and cos 2x = cos2x - sin2x]
⇒ sin 3θ = 2sinθcos2θ + cos2θsinθ - sin3θ
⇒ sin 3θ = 2sinθ (1-sin2θ) + ( 1-sin2θ) sinθ - sin3θ [Since, cos2x = 1 - sin2x]
⇒ sin 3θ = 2sinθ - 2sin3θ + sinθ - sin3θ - sin3θ
⇒ sin 3θ = 3sinθ - 4sin3θ
Hence, proved sin3θ = 3sinθ - 4sin3θ.
visual curriculum