Trigonometry Formula

Trigonometry Formula
Go back to  'Trigonometry'

Trigonometry is the algebra of ratios of the sides of a triangle. The word Trigonometry was derived from greek, with trignos meaning triangle and metry meaning to measure. The earlier study of trigonometry started in the 2nd millennium BC by an Egyptian mathematician by the name Papyrus. Trigonometry finds its applications in other areas of mathematics such as calculus, coordinate geometry, plane geometry, and algebra.  

Traingles

In this mini-lesson, we shall explore the world of trigonometry, by finding answers to questions like what are trigonometric functions, what are complementary angles, what are inverse trigonometric functions, and by understanding the use of these trigonometric ratios by solving examples and interactive questions.

Lesson Plan 


Trigonometric Functions

Trigonometry is the algebra of ratios of sides of a right-angled traingle. These ratios are represented as trigonometric ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec).

Right Angled Triangle

The Pythagoras theorem is helpful to build the relationship between the three sides of a right-angled triangle.  

\[ \text {Hypotenuse}^2 = \text{Perpendicular}^2 + \text{Base}^2 \]

Further, the ratio of the sides of a right-angled triangle gives the following trigonometric ratios.

Trigonometric Ratios Ratio of Sides
\( \text{Sin }\theta \) \( \dfrac{\text{Perpendicular}}{\text {Hypotenuse}} \)
\( \text{Cosec }\theta \) \( \dfrac{\text {Hypotenuse}}{\text{Perpendicular}} \)
\( \text{Cos }\theta \) \( \dfrac{\text{Base}}{\text {Hypotenuse}} \)
\( \text{Sec }\theta \) \( \dfrac{\text {Hypotenuse}}{\text{Base}} \)
\( \text{Tan }\theta \) \( \dfrac{\text{Perpendicular}}{\text{Base}} \)
\( \text{Cot }\theta \) \( \dfrac{\text{Base}}{\text{Perpendicular}} \)

Complementary angles

The two angles which sum up to a \(90^\circ \) are called complementary angles.

Here the angle \(\theta \) is an acute angle.

The trigonometry ratio formulae for complementary angles is as follows.

  • \(\text{Sin }(90^\circ - \theta) = \text{Cos }\theta \)  also \(\text{Cos }(90^\circ - \theta) = \text{Sin }\theta \)
  • \(\text{Tan }(90^\circ - \theta)  = \text{Cot }\theta \)  also \(\text{Cot }(90^\circ - \theta) = \text{Tan }\theta \)
  • \(\text{Cosec }(90^\circ -\theta) = \text{Sec }\theta\)  also \(\text{Sec }(90^\circ - \theta) = \text{Cosec }\theta \)
 
important notes to remember
Important Notes
  1. Among the trigonometric functions Cos\(\theta\) and Sec\(\theta \) are even functions. \[Cos(-\theta) = Cos \theta\text{ and }Sec(-\theta) = Sec\theta \]
  2. All the other functions are odd functions.   \[ Sin(-\theta) = -Sin \theta ;Tan(-\theta) = -Tan\theta;\\ Cot(-\theta) = -Cot\theta;Cosec(-\theta) = -Cosec\theta \]
  3. Some of the principal values of Sin \(\theta\), Cos\(\theta\), and Tan\(\theta \) are as follows.

\(\begin{align} Sin0^\circ = 0;Sin30^\circ = \dfrac{1}{2};Sin45^\circ = \dfrac{1}{\sqrt 2};Sin60^\circ = \dfrac{\sqrt 3}{2};Sin90^\circ = 1 \\ Cos0^\circ = 0;Cos30^\circ = \dfrac{\sqrt 3}{2};Cos45^\circ = \dfrac{1}{\sqrt 2};Cos60^\circ = \dfrac{1}{2};Cos90^\circ = 0  \\ \text{Tan }0^\circ = 0;Tan30^\circ = \dfrac{1}{\sqrt 3};Tan45^\circ = 1;Tan60^\circ = \sqrt 3;\\Tan90^\circ = \text{undefined}\end{align} \)

Reciprocal Identities

A set of trigonometric ratios are related through the following reciprocal relation.  

  • \( \text{Sin }\theta = \dfrac{1}{\text{Cosec }\theta}\)  or \( \text{Cosec }\theta = \dfrac{1}{\text{Sin }\theta}\)
  • \( \text{Cos }\theta = \dfrac{1}{\text{Sec }\theta}\) or \( \text{Sec }\theta = \dfrac{1}{\text{Cos }\theta}\)
  • \( \text{Tan }\theta = \dfrac{1}{\text{Cot }\theta}\) or \( \text{Cot }\theta = \dfrac{1}{\text{Tan }\theta}\)

Also, we have the following important formulae.

  • \(\text{Tan }\theta = \dfrac{\text{Sin }\theta}{\text{Cos }\theta}\)
  • \(\text{Cot }\theta = \dfrac{\text{Cos }\theta}{\text{Sin }\theta}\)

Pythagorean Identities

The concept of Pythagoras theorem, if applied to trigonometric ratios results in the following three formulae.

  • \(\text{Sin }^2\theta + \text{Cos }^2\theta = 1 \)
  • \(1 + \text{Tan }^2\theta  = \text{Sec }^2\theta \)
  • \(1 + \text{Cot }^2\theta = \text{Cosec }^2\theta \)

Inverse Trigonometric Functions

The trigonometric ratios are inverted to create the inverse trigonometric functions.  

\[\begin{align}  \text{Sin } \theta &= x \\ \theta &= \text{Sin }^{-1} x \end{align} \]

Here x can have values in whole numbers, decimals, fractions, and exponents.

\( \text{Sin }^{-1}(-x) = -\text{Sin }^{-1}(x) \)

\( \text{Cos }^{-1}(-x) =\pi -\text{Cos }^{-1}(x) \)

\( \text{Tan }^{-1}(-x) = -\text{Tan }^{-1}(x) \)

\( \text{Cot }^{-1}(-x) = \pi -\text{Cot }^{-1}(x) \)

\( \text{Sec }^{-1}(-x) = \pi -\text{Sec }^{-1}(x) \)

\( \text{Cosec }^{-1}(-x) = -\text{Cosec }^{-1}(x) \)


Cofunction Identities

The cofunction identities provide the interrelationship between the different inverse trigonometry functions.

  • \( \text{Sin }^{-1}(x) = \text{Cosec }^{-1}\dfrac{1}{x} \)
  • \( \text{Cos }^{-1}(x) = \text{Sec }^{-1}\dfrac{1}{x} \)
  • \( \text{Tan }^{-1}(x) = \text{Cot }^{-1}\dfrac{1}{x} \)
  • \( \text{Sin }^{-1}(x) + \text{Cos }^{-1}(x) = \dfrac{\pi}{2} \)
  • \( \text{Tan }^{-1}(x) + \text{Cot }^{-1}(x) = \dfrac{\pi}{2} \)
  • \( \text{Sec }^{-1}(x) + \text{Cosec }^{-1}(x) = \dfrac{\pi}{2} \)
  • \( \text{Sin }^{-1}x = \text{Cos }^{-1}\sqrt{ (1 - x^2) } \)
 
Thinking out of the box
Think Tank

Each of the trigonometry formulae can be transformed and written in the form of inverse trigonometry formulae. A few of the examples are listed below.

  • \( \text{Sin }\theta = \dfrac{1}{\text{Cosec }\theta}\) can be written in inverse trigonometric form as \(\text{Sin }^{-1}x = \text{Cosec }^{-1}\left(\dfrac{1}{x}\right) \)
  • \( \text{Sin }\theta = \sqrt {(1 - \text{Cos }^2\theta)}\) can be written in inverse trigonometric form as \(\text{Sin }^{-1}x = \text{Cos }^{-1}\sqrt{(1 - x^2)} \)
  • \( \text{Sin }2\theta = 2\text{Sin }\theta.\text{Cos }\theta\) can be written in inverse trigonometric form  as 2\(\text{Sin }^{-1}x = \text{Sin }^{-1}2x\sqrt(1 - x^2) \)
  • \(\text{Tan}(x + y) = \dfrac{\text{Tan} x + \text{Tan} y}{1 - \text{Tan} x \cdot \text{Tan} y}\) can be written in inverse trigonometric form as \(\text{Tan }^{-1}x + \text{Tan }^{-1}y = \text{Tan }^{-1}\left(\dfrac{x + y}{1 - xy}\right)\)

Now you may apply this idea to transform each of the trigonometric formulae into an inverse trigonometric formula.

Sum and Difference Identities

The combination of two acute angles A and B can be presented through the trigonometric ratios, in the below formulae.

  • \(\sin (A + B) = \sin A.\cos B + \cos A.\sin B \)
  • \(\sin (A - B) = \sin A.\cos B - \cos A.\sin B \)
  • \(\cos (A + B) = \cos A.\cos B  -\sin A.\sin B \)
  • \(\cos (A - B) = \cos A.\cos B +  \sin A.\sin B \)

Double Angle Identities

The double of the angle \(\theta \) is presented through the below few formulae.

  • \(\text{Sin }2\theta = 2\text{Sin }\theta.\text{Cos }\theta \)
  • \(\begin{align}\text{Cos }2\theta &= 2\text{Cos }^2\theta - 1 \\&= 1 - 2\text{Sin }^2\theta \\&= \text{Cos }^2\theta - \text{Sin }^2\theta\end{align} \)
  • \(\text{Tan }2\theta = \dfrac{2\text{Tan }\theta}{1 - \text{Tan }^2\theta} \)

Also we have the \(\text{Sin }2\theta \) and \(\text{Cos } 2\theta \) in terms of \(\text{Tan }\theta \).

  • \(\text{Sin }2\theta = \dfrac{2\text{Tan }\theta}{1 +\text{Tan }^2\theta} \)
  • \(\text{Cos }2\theta = \dfrac{1 - \text{Tan }^2\theta}{1 +\text{Tan }^2\theta} \)

Half-Angle Identities

The half of the angle \(\theta \) is presented through the below formulae.

  • \(\text{Sin }^2\dfrac{\theta }{2} = \dfrac{1 - \text{Cos }\theta}{2} \)
  • \(\text{Cos }^2\dfrac{\theta }{2} = \dfrac{1 + \text{Cos }\theta}{2} \)
  • \(\text{Sin }^2\dfrac{\theta }{2} + \text{Cos }^2\dfrac{\theta}{2} = 1 \)

Heron's Formula

The Heron's formulae are used to find the area of a triangle.  For training of sides of length a, b, c units the Heron's formula to calculate the area is as follows.

Traingle for Heron's Formula

A, B, C are the angles of the triangle, and the sides AB = c, BC = a, and AC = b

\[A = \sqrt{(s(s - a)(s - b)(s - c)) }\]

Here, s is the semi perimeter and \(s = \dfrac {a + b + c}{2} \)


Sine Law and Cosine Law

The Sine Law and the Cosine Law gives a relationship between the sides and angles of a triangle.  

The Sine Law gives the ratio of the sides and the angle opposite to the side. As an example, the ratio is taken for the side 'a' and its opposite angle 'A'.

\[\dfrac{a}{\text{Sin }A} = \dfrac{b}{\text{Sin }B} = \dfrac{c}{\text{Sin }C} \]

The Cosine Law helps to find the length of a side, for the given lengths of the other two sides and the included angle.  

As an example the length 'a' can be found with the help of the other two sides 'b' and 'c' and their included angle 'A'.

\[\begin{align} a^2 &= b^2 + c^2 - 2 bc \text{ Cos }A  \\ b^2 &= a^2 + c^2 -2 ac \text{ Cos }B \\ c^2 &= a^2 + b^2 - 2 ab \text{ Cos }C \end{align}\]

a, b,c are the lengths of the sides of the traingle and A, B C are the angles of the traingle.


Solved Examples

Example 1

 

 

Raschel is given the trigonometic ratio of \(\text{Tan }\theta = \dfrac{5}{12} \).  Help Raschel to find the trigonometric ratio of \(\text{Cosec }\theta \).

Solution

\[\begin{align} \text{Tan }\theta &= \dfrac{\text{Perpendicular}}{\text{Base}} =\dfrac{5}{12} \\  \text{Perpendicular} &= 5 ~ \text{and} ~\text{Base} = 12 \\ \text {Hypotenuse}^2 &= \text{Perpendicular}^2 + \text{Base}^2 \\\text {Hypotenuse}^2 &= 5^2 + 12^2 \\ \text {Hypotenuse}^2 &= 25 + 144 \\ \text {Hypotenuse} &= \sqrt{169}\\ \text {Hypotenuse}&=13\\\text{Hence},~ \text{  Sin }\theta &= \dfrac{\text{Perpendicular}}{\text {Hypotenuse}} = \dfrac{5}{13} ~and~ \text{Cosec }\theta = \dfrac{\text {Hypotenuse}}{\text{Perpendicular}} = \dfrac{13}{5}\end{align}\]

\(\therefore \text{Cosec }\theta = \dfrac{13}{5} \)
Example 2

 

 

As part of the assignment, Samuel has to find the value of \(\text{Sin }15^\circ \). How can we help Samuel to find the value?

Solution

\[\begin{align} \text{Sin }15^\circ &= \text{Sin }(45^\circ - 30^\circ) \\ &= \text{Sin }45^\circ.\text{Cos }30^\circ - \text{Cos }45^\circ.\text{Sin }30^\circ  \\ &= \dfrac{1}{\sqrt2}.\dfrac{\sqrt3}{2}  - \dfrac{1}{\sqrt2}.\dfrac{1}{2} \\ &= \dfrac{\sqrt3 - 1}{2\sqrt2} \end{align} \]

\( \therefore \text{Sin }15^\circ=  \dfrac{\sqrt3 - 1}{2\sqrt2} \)
Example 3

 

 

If \(\text{Sin }\theta.\text{Cos }\theta = 5\), find the value of \((\text{Sin }\theta + \text{Cos }\theta)^2\).

Solution

\[\begin{align}(\text{Sin }\theta + \text{Cos }\theta)^2 &= \text{Sin }^2\theta + \text{Cos }^2\theta + 2\text{Sin }\theta.\text{Cos }\theta \\
&= (1) + 2(5)  \\&= 1 + 10
\\&=11\end{align}\]

\(\therefore \) Answer = 11
Example 4

 

 

If the trigonometric vaue of \(\text{Tan }2A = \text{Cot }(A - 60^\circ)\), find the value of A.

Solution

\[\begin{align}\text{Tan }2A &= \text{Cot }(A - 60^\circ)  \\ \text{Cot }(90^\circ - 2A) &= \text{Cot }(A  - 60^\circ) \\90^\circ - 2A &= A - 60^\circ \\90^\circ + 60^\circ &= A + 2A  \\150^\circ &= 3A \\3A & = 150^\circ \\ A &= \dfrac{150^\circ}{3}  \\ A &= 50^\circ\end{align}\]

\(\therefore~A = 50^\circ \)
Example 5

 

 

Simplify \(\text{Tan }^{-1} \sqrt{\left(\dfrac{1 - \text{Cos }\theta}{1 + \text{Cos }\theta}\right)}\).

Solution

\[\begin{align}\text{Tan }^{-1} \sqrt{\left(\dfrac{1 - \text{Cos }\theta}{1 + \text{Cos }\theta}\right)}&=Tan^{-1}\sqrt{\left(\dfrac{2\text{Sin }^2\dfrac{\theta}{2}}{2\text{Cos }^2\dfrac{\theta}{2}}\right)} \\&=\text{Tan }^{-1} \sqrt{\left(\text{Tan }^2\dfrac{\theta}{2}\right)} \\ &= \text{Tan }^{-1}\text{Tan }\dfrac{\theta}{2} \\ &= \dfrac{\theta}{2}\end{align}\]

\(\therefore\)The answer is \(\dfrac{\theta}{2} \)

Interactive Questions on Trigonometry Formulae

Here are a few activities for you to practice. Select/Type your answer and click the "Check Answer" button to see the result.

 


 

 
 
 
 
 
 

Let's Summarize

The mini-lesson targeted the fascinating concept of Trigonometric Formulae. The math journey around Trigonometric Formulae starts with what a student already knows, and goes on to creatively crafting a fresh concept in the young minds. Done in a way that not only it is relatable and easy to grasp, but also will stay with them forever. Here lies the magic with Cuemath.

About Cuemath

At Cuemath, our team of math experts is dedicated to making learning fun for our favorite readers, the students!

Through an interactive and engaging learning-teaching-learning approach, the teachers explore all angles of a topic.

Be it worksheets, online classes, doubt sessions, or any other form of relation, it’s the logical thinking and smart learning approach that we, at Cuemath, believe in.


FAQs on Trigonometry Formula

1. What is trigonometry?

Trigonometry is the algebra of the trigonometric ratios.  There are six trigonometric ratios \(Sin\theta,~ Cos\theta,~ Tan\theta,~ Cot\theta,~ Sec\theta,~and~ Cosec\theta \) which are derived from the ratio of sides of a right-angled triangle.

2. What are trigonometric ratios?

The trigonometric ratios are the ratio of the sides of a right ranged triangle.

\[\begin{align} Sin\theta &= \dfrac{Perp}{Hyp}; ~Cosec\theta = \dfrac{Hyp}{Perp}\\Cos\theta &= \dfrac{Base}{Hyp};~ Sec\theta = \dfrac{Hyp}{Base} \\ Tan\theta &= \dfrac{Perp}{Base}; ~Cot\theta = \dfrac{Base}{Perp} \end{align} \]

3. What is inverse trigonometry ratios?

The Trigonometric ratios are inverted to create inverse trigonometric functions.  

\[\begin{align}  \text{Sin } \theta &= x \\ \theta &= \text{Sin }^{-1} x \end{align} \]

4. What is the pythagoras theorem?

The Pythagoras theorem gives a relationship between the sides of a right-angled triangle.  

\[ (Pythagoras)^2 = (Perpendicular)^2 + (Height)^2\]

5. When do you use Heron's formula?

The Heron's formulae are used to find the area of a triangle. For training of sides of length a, b, c units the Heron's formula to calculate the area is as follows.

\(A = \sqrt(s(s - a)(s - b)(s - c)) \)

Here s is the semi perimeter and \(s = \dfrac {a + b + c}{2} \)

6. What does the cosine rule mean?

The cosine rule helps to find the length of the sides of the traingle, given the length of the other two sides and the included angle..

\[\begin{align} a^2 &= b^2 + c^2 - 2bcCosA  \\ b^2 &= a^2 + c^2 -2acCosB \\ c^2 &= a^2 + b^2 - 2anCosC \end{align}\]

7. What does the sine rule state?

The sine rule states the relationship between the sides of the triangle and the sine of the angles of the triangle.

\[\dfrac{a}{SinA} = \dfrac{b}{SinB} = \dfrac{c}{SinC} \]

More Important Topics
Numbers
Algebra
Geometry
Measurement
Money
Data
Trigonometry
Calculus