from a handpicked tutor in LIVE 1-to-1 classes
How do you use part I of the Fundamental Theorem of Calculus to find the derivative of: f(x)=x ∫3(((1/3)t2) - 1)7dt?
Solution:
The Fundamental Theorem of Calculus Part 1 states:
If f is continuous on [a, b] the F(x) = \(\int_{a}^{x}\) f(t)dt is continuous on [a,b] and differentiable on (a,b) and its derivative is f(x);
F’(x) = \(\frac{\mathrm{d}\int_{a}^{x}f(t)dt }{\mathrm{d} x}\) = f(x)------> (1)
f(x) = \(\int_{x}^{3}(((\frac{1}{3})t^{2})-1)^{7}dt\)
F’(x) = \(\frac{\mathrm{d} }{\mathrm{d} x}\int_{x}^{3}(((\frac{1}{3})t^{2})-1)^{7}dt\) ------>(2)
Using the u-substitution we get:
t2 / 3 - 1 = u ------> (3)
(2/3)tdt = du
dt = (3/2t )du ------> (4)
To find t we use equation (3) from where we get
⇒ t2 = 3( u+1)
t = √3√u + 1 ------> (5)
Substituting (5) in (4) we get
dt = 3 / ( 2√3√u+1) du ------>(6)
dt = √3 / ( 2√u + 1) du ------> (7)
Substituting (7) in (2) we get
= \(\frac{\mathrm{d} }{\mathrm{d} x}\int_{x}^{3}(u)^{7}(\frac{\sqrt{3}}{2\sqrt{u+1}})du\)
= \(\frac{\mathrm{d} }{\mathrm{d} x}\int_{3}^{x}-(u)^{7}(\frac{\sqrt{3}}{2\sqrt{u+1}})du\)
= - \(\frac{\sqrt{3}}{2}\frac{x^{7}}{\sqrt{x+1}}\)
How do you use part I of the Fundamental Theorem of Calculus to find the derivative of: f(x)= x ∫3(((1/3)t2) - 1)7dt?
Summary:
By using part I of the Fundamental Theorem of Calculus the derivative of:f(x)=x ∫3(((1/3)t2) - 1)7dt is given by - \(\frac{\sqrt{3}}{2}\frac{x^{7}}{\sqrt{x+1}}\)
visual curriculum