If tanh(x) = 5/13 , find the values of the other hyperbolic functions at x.
Solution:
Given, tanh(x) = 5/13
We have to find the values of the other hyperbolic functions at x.
tanx = sinx/cosx
So, tanh(x) = sinh(x)/cosh(x)
perpendicular = 5, base = 12 and hypotenuse = 13
cosh(x) = b/h = 12/13 and sinh(x) = p/h = 5/13
We know, cosecx = 1/sinx
So, cosech(x) = 1/sinh(x)
cosech(x) = 13/5
We know, secx = 1/cosx
So, sech(x) = 1/cosh(x)
sech(x) = 13/12
We know, cotx = 1/tanx
So, coth(x) = 1/tanh(x)
coth(x) = 1/(5/13)
coth(x) = 13/5
Therefore, the values of other hyperbolic functions at x are sinh(x) = 5/13, cosh(x) = 12/13, cosech(x) = 13/5, sech(x) = 13/12 and coth(x) = 13/5.
If tanh(x) = 5/13 , find the values of the other hyperbolic functions at x.
Summary:
If tanh(x) = 5/13 , the values of the other hyperbolic functions at x are sinh(x) = 5/13, cosh(x) = 12/13, cosech(x) = 13/5, sech(x) = 13/12 and coth(x) = 13/5.
visual curriculum