Integrate (1 / 1 + cot x)
Cot x is an inverse trigonometric identity and can be expressed as cos x / sin x.
Answer: ∫ (1 / 1 + cot x) dx is x/2 + 1/2 log(sin x + cos x) + c
Let's integrate.
Explanation:
⇒ ∫ 1 / 1 + cot x dx = ∫ 1 / 1 + cosx/sinx dx
⇒ ∫ 1 / (sin x + cos x) / sinx dx
Multiply both numerator and denominator by sin x
⇒ ∫ sinx / (sin x + cosx) dx.
Multiply and divide by 2
⇒ 1/2 ∫ 2 sin x / (sin x + cosx) dx
Add and subtract cos x in the numerator.
⇒ 1/2 ∫ sin x + sin x + cos x - cos x / (sin x + cosx) dx
⇒ 1/ 2 ∫ sin x + cos x + sin x - cos x / (sin x + cosx) dx
⇒ 1/ 2 ∫ [(sin x + cos x) / (sin x + cosx) + (sin x - cos x) / (sin x + cosx)] dx
⇒ 1/ 2 ∫ dx + 1/ 2 ∫ (sin x - cos x) / (sin x + cosx) dx
⇒ 1/2 x + 1/ 2 ∫ (sin x - cos x) / (sin x + cosx) dx
Let sin x + cos x = t
Differentiating w.r.t 'x'
cos x - sin x = dt/dx
⇒ 1/2 x - 1/2 ∫ [ dt / t ] dx
⇒ x/2 - 1/ 2 log[t] + c
⇒ x/2 - 1/2 log(sin x + cos x) + c
Thus, ∫ (1 / 1 + cot x) dx is x/2 + 1/2 log(sin x + cos x) + c
visual curriculum