Integrate ((tanx)1/2 + (cotx)1/2)dx
Integration is exactly the reverse process of differentiation. We will use trigonometric formulae to solve this integration
Answer: ∫ ((tanx)1/2 + (cotx)1/2)dx = √2 sin-1(sinx - cosx) + C
Let us solve the problem below
Explanation:
Let, I = ∫ (√tanx + √cotx) dx
I = ∫ (√(sinx/cosx) + √(cosx/sinx)) dx [Since, tan x = sin x / cos x and cot x = cos x / sin x]
On taking LCM and solving we get,
I = ∫ (sinx + cosx)/√(sinx.cosx) dx ---------------- (1)
Let, sinx - cosx = t
By differentiating the above we get,
So, (cosx + sinx) dx = dt ---------------- (2)
Also, (sinx - cosx)2 = t2
⇒ 1 - 2sinx.cosx = t2 [Since, sin2x + cos2x = 1]
⇒ sinx.cosx = (1 - t2)/2 ---------------- (3)
Substituting (2) and (3) in (1), we get
I = ∫ √2 dt /√(1 - t2)
Integrating I using the rule,
∫ dt /√(1 - t2) = sin-1t
Applying this, we get
I = √2 sin-1t + C
where, C is the constant of integration.
Therefore, ∫ ((tanx)1/2 + (cotx)1/2)dx = √2 sin-1(sinx - cosx) + C
visual curriculum