Integrate the function f(x) =cos2 x.
To integrate ∫ cos2 x dx, we will write cos2 x = cos x × cos x and integrate using part integration.
Answer: 1 / 2 ( cos x sin x ) + x / 2 + C
Let's integrate ∫ cos2 x dx.
Explanation:
To integrate ∫ cos2 x dx assume I = ∫ cos2 x dx.
I = ∫ cos2 x dx
I = ∫ cos x × cos x dx
We know that ∫ (u × v) dx = u ∫ v dx - ∫ ( u' - ∫ v dx) dx
I = cos x × sin x - ∫ (( - sin x ) × sin x) dx
I = cos x × sin x + ∫ ( sin2 x) dx
I = cos x × sin x + ∫ ( 1 - cos2 x) dx
I = cos x × sin x + ∫ 1 - ∫ (cos2 x) dx
I = cos x × sin x + x - I
On solving this we get,
2I = cos x × sin x + x
I = 1 / 2 ( cos x × sin x ) + x / 2 + C
Thus, the integral of ∫ cos2 x is 1 / 2 ( cos x sin x ) + x / 2 + C
Math worksheets and
visual curriculum
visual curriculum