What are the zeros of the quadratic function f(x) = 2x2 + 16x - 9?
Solution:
Given, the function is f(x) = 2x2 + 16x - 9
We have to find the zeros of the quadratic function.
f(x) = 2x2 + 16x - 9 = 0
So, 2x2 + 16x - 9 = 0
Using quadratic formula,
\(x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\)
Here, a = 2, b = 16, c = -9
So, x = \(\frac{-16\pm \sqrt{(16)^{2}-4(2)(-9)}}{2(2)}\)
x = \(\frac{-16\pm \sqrt{256+72}}{4}\\=\frac{-16\pm \sqrt{328}}{4}\)
x = \(\frac{-16\pm 18.11}{4}\)
Now, \(x=\frac{-16+18.11}{4}=\frac{2.11}{4}=0.523\)
\(x=\frac{-16-18.11}{4}=\frac{-34.11}{4}=-8.528\)
Therefore, the zeros of the function are 0.523 and -8.528
What are the zeros of the quadratic function f(x) = 2x2 + 16x - 9?
Summary:
The zeros of the quadratic function f(x) = 2x2 + 16x - 9 are 0.523 and -8.528
Math worksheets and
visual curriculum
visual curriculum