What is the factored form of 6n4 - 24n3 + 18n?
Solution:
Let equation f(n) = 6n4 - 24n3 + 18n
f(n) = 6n[n3 - 4n2 + 3]
Take F(n) = n3 - 4n2 + 3
F(1) = (1)3 - 4(1)2 + 3
F(1) = 0
(n - 1) is one of the factors of F(n).
1 │ 1 -4 0 3
│ 0 1 -3 -3
--------------------
1 -3 -3 0
Quotient = n2 - 3n -3
The discriminant = b2 - 4ac
= (-3)2 - [4(1)(-3)]
= 21
⇒ n2 - 3n -3 cannot be factored further
Therefore, the factors of f(n) = 6n(n -1)(n2 - 3n -3)
What is the factored form of 6n4 - 24n3 + 18n?
Summary:
The factored form of 6n4 - 24n3 + 18n is 6n(n -1)(n2 - 3n -3).
Math worksheets and
visual curriculum
visual curriculum