# What is the quotient (125 - 8x^{3}) ÷ (25 + 10x + 4x^{2})?

-2x + 5, 2x - 5, -2x - 5, 2x + 5

**Solution:**

We will factorise the 125 - 8x^{3} using the algebraic identity (a)^{3} - (b)^{3 }= (a - b)(a^{2} + ab + b^{2})

125 - 8x^{3} can be expressed in the factored form.

(5)^{3} - (2x)^{3} = (5 - 2x)(25 + 10x + 4x^{2})

To find the quotient when (125 - 8x^{3}) ÷ (25 + 10x + 4x^{2}), we will divide them by the factors.

(5 - 2x)(25 + 10x + 4x^{2}) / (25 + 10x + 4x^{2})

Cancel the terms, to get the quotient

(5 - 2x) or (-2x + 5) is the quotient.

## What is the quotient (125 - 8x^{3}) ÷ (25 + 10x + 4x^{2})?

**Summary:**

The quotient when (125 - 8x^{3}) ÷ (25 + 10x + 4x^{2}) is (5 - 2x) or (- 2x + 5).