from a handpicked tutor in LIVE 1-to-1 classes

# Simplify.

(i) (25×t^{−4})/(5^{−3}×10×t^{−8}) (t ≠ 0)

(ii) (3^{−5}×10^{−5}×125)/(5^{−7}×6^{−5})

**Solution:**

The exponent of a number shows how many times the number is multiplied by itself.

(i) (25 × t^{−4})/(5^{−3 }× 10 × t^{−8})

Let's express 25 and 10 in terms of their prime actors as shown below,

= (5^{2 }× t^{−4})/(5^{−3 }× 5 × 2 × t^{−8 })

= (5^{2 }× t^{−4})/(5^{−3 + 1 }× 2 × t^{−8}) [Since, a^{m }× a^{n }= a^{m + n}]

= (5^{2 }× t^{−4})/(5^{−2 }× 2 × t^{−8})

= (5^{2−(−2) }× t^{−4−(−8)})/2 [Since, a^{m}/a^{n }= a^{m − n}]

= (5^{4 }× t^{−4 + 8})/2

= 625t^{4}/2

(ii) (3^{−5}×10^{−5}×125)/(5^{−7}× 6^{−5})

Let's express 10, 6 and 125 in terms of their prime factors.

= (3^{−5 }× (2 × 5)^{−5 }× 5^{3})/(5^{−7}× (2 × 3)^{-5})

= 3^{−5−(−5) }× 2^{−5−(−5) }× 5^{−5−(−7)+3} [Since, a^{m }× a^{n }= a^{m + n} and a^{m}/a^{n }= a^{m − n}]

= 3^{0 }× 2^{0 }× 5^{5 }

= 1 × 1 × 5^{5 }[∵a^{0}=1]

= 5^{5}

**☛ Check: **NCERT Solutions for Class 8 Maths Chapter 12

**Video Solution:**

## Simplify. (i) (25×t⁻⁴)/(5⁻³×10×t⁻⁸) (t ≠ 0) (ii) (3⁻⁵×10⁻⁵×125)/(5⁻⁷×6⁻⁵)

Class 8 Maths NCERT Solutions Chapter 12 Exercise 12.1 Question 7

**Summary:**

The value of the following expressions (i) (25×t^{−4})/(5^{−3}×10×t^{−8}) (t ≠ 0) (ii) (3^{−5}×10^{−5}×125)/(5^{−7}×6^{−5}) are (i) 625t^{4}/2 and (ii) 5^{5} respectively

**☛ Related Questions:**

- Evaluate (i) 3-2 (ii) (4)-2 (iii) (1/2)-5.
- Simplify and express the result in power notation with positive exponent. (i) (−4) 5 ÷ (−4) 8 (ii) (1 / 23) 2 (iii) (−3) 4 × (5/3) 4 (iv) (3 -7 ÷ 3 -10) × 3 -5 (v) 2 -3 × (−7) -3
- Find the value of (i) (30 × 4−1) × 22 (ii) (2−1 × 4−1) ÷ 2−2 (iii) (1/2)−2 + (1/3)−2 + (1/4)−2 (iv) (3−1 +4−1 + 5−1)0 (v) {(−2/3)−2}2
- Evaluate (i) (8−1× 53)/2−4 (ii) (5−1× 2−1)×6−1

visual curriculum