Given the function f(x) = 3|x - 2| + 6, for what values of x is f(x) = 18?
Solution:
Given: Function f(x) = 3|x - 2| + 6
In order to determine the value of x put f(x) = 18
3|x - 2| + 6 = 18
Subtract 6 on both sides
3|x - 2| + 6 - 6 = 18 - 6
3|x - 2| = 12
Divide both sides by 3
|x - 2| = 4
We know that an absolute value function contains two x values
|x - 2| = 4
x - 2 = ± 4
So we get
x - 2 = 4 or x - 2 = - 4
x = 4 + 2 or x = - 4 + 2
x = 6 or x = -2
Therefore, the values of x are 6 or -2.
Given the function f(x) = 3|x - 2| + 6, for what values of x is f(x) = 18?
Summary:
The values of x are 6 or -2 for the given function f(x) = 3|x - 2| + 6, for f(x) = 18.
Math worksheets and
visual curriculum
visual curriculum