# How to find the surface area of a right rectangular prism?

A right rectangular prism is a three-dimensional solid whose all 6 faces are rectangles.

## Answer: The surface area of a right rectangular prism is given by the formula 2 × (bh + lh + lb), where l is the length, b is the breadth and h is the height of a right rectangular prism.

To find the surface area of a right rectangular prism, we sum up the area of its all 6 faces.

**Explanation:**

Let l be the length, b be the breadth and h be the height of a right rectangular prism. Look at the figure of a right rectangular prism shown below.

The surface area of this solid will be calculated as:

Surface area of a right rectangular prism = (b × h) + (l × h) + (l × b) + (l × h) + (l × b) + (b × h)

= 2 × (b × h + l × h + l × b)

= 2 × (bh + lh + lb)

Let us find the surface of a right rectangular prism with dimensions 10 units × 8 units × 5 units.

Substitute 10 for l, 8 for b, and 5 for h in the formula to find the surface area of a right rectangular prism.

Surface area of a right rectangular prism = 2 × [(8 × 5) + (10 × 5) + (10 × 8)] square units

= 2 × [40 + 50 + 80] square units

= 340 square units