Integrate [x - sin x] / [1 - cos x].
The method of calculating the antiderivative of a function is called integration.
Answer: After integrating [x - sin x] / [1 - cos x], we get -x cot (x/2) + C
With the help of trigonometric formulas, we will find the solution.
Explanation:
We have, ∫ [x - sin x] / [1 - cos x] dx
Applying double angle formulas,
= ∫ (x - 2 sin (x/2) cos (x/2)) / (2 sin2(x/2)) dx
= ∫ (x / (2 sin2(x/2)) - 2 (sin (x/2) cos (x/2)) / (2 sin2(x/2)) dx
= ∫ (1/2) x cosec2(x/2) - cot (x/2) dx ……(1)
= 1/2 ∫ [-x (2cot (x/2)) - ∫ {(d/dx) x ∫ cosec2(x/2) dx} dx] - ∫ cot (x/2) dx
= -x cot (x/2) + ∫ cot (x/2) dx - ∫ cot (x/2) dx + C
= -x cot (x/2) + C
Thus, the integration of [x - sin x] / [1 - cos x] is equal to -x cot (x/2) + C
Math worksheets and
visual curriculum
visual curriculum