Solve the following system of equations: 2x - y + z = - 3, 2x + 2y + 3z = 2, 3x - 3y - z = - 4.
Solution:
We have a system of linear equations of three variables.
Given:
2x - y + z = - 3 ---------> (1)
⇒ 2x + 2y + 3z = 2 ---------> (2)
⇒ 3x - 3y - z = - 4 ---------> (3)
Let us solve them using the substitution method.
By solving equation [3] for the variable z, we get
⇒ z = 3x - 3y + 4 …….be eq (4)
Substitute the value of z = 3x - 3y + 4 in equation [1]
⇒ 2x - y + (3x - 3y + 4) = - 3
⇒ 5x - 4y = -7 ………(multiply the equation by 11)
⇒ 55x - 44y = - 77 ---------> (5)
Substitute the value of z = 3x - 3y + 4 in equation [2]
⇒ 2x + 2y + 3 (3x - 3y + 4) = 2
⇒ 11x - 7y = - 10…….. (multiply the equation by 5)
⇒ 55x - 35y = - 50---------> (6)
We will use elimination method and subtract eq (5) from (6)
⇒ (55x - 35y = - 50) - (55x - 44y = - 77)
⇒ 9y = 27 or y = 3
Put the value of y = 3 in equation (5) to get the value of x.
⇒ 55x - 44(3) = - 77
⇒ 55x = - 77 + 132
⇒ x = 1
Put the values of x and y in equation (4)
z = 3 (1) - 3 (3) + 4
z = 3 - 9 + 4
z = -2
Thus on solving the equations we get x = 1, y = 3 and z = -2
Solve the following system of equations: 2x - y + z = - 3, 2x + 2y + 3z = 2, 3x - 3y - z = - 4.
Summary:
By solving the system of linear equations 2x - y + z = - 3, 2x + 2y + 3z = 2, 3x - 3y - z = - 4; we get (x, y, z) = (1, 3, -2)
visual curriculum