Solve the given differential equation by undetermined coefficients. y(4) + 2y'' + y = (x - 5)2
Solution:
Given, the differential equation is y(4) + 2y'' + y = (x - 5)2
The differential operator form of the given differential equation is
(D4 - 2D3 + D2)y = ex + 1
Comparing f(d)y = ex + 1
The auxiliary equation f(m) = 0
m4 - 2m3 + m2 = 0
m2(m2 - 2m + 1) = 0
Now, m2 - 2m + 1 = m2 - m - m + 1
= m(m - 1) - 1(m - 1)
= (m - 1)(m - 1)
So, m2(m - 1)(m - 1) = 0
m2 = 0
m = ±0
m - 1 = 0
m = 1
The roots are 0, 0, 1 and 1.
Complementary function is \(y_{c}=(C_{1}+C_{1}x)e^{0}x+(C_{3}+C_{4}x)e^{x}\)
The particular equation is \(\frac{1}{f(D)}Q\)
P.I = \(\frac{1}{D^{2}(D-1)^{2}}e^{x}+1\)
P.I = \(\frac{1}{D^{2}(D-1)^{2}}e^{x}+\frac{1}{D^{2}(D-1)^{2}}e^{0}\)
P.I = I1 + I2
= \(\frac{1}{D^{2}}(\frac{x^{2}}{2!})e^{x}+\frac{1}{D^{2}}e^{0x}\)
1/D means integration,
\(\frac{1}{D^{2}}(\frac{x^{2}}{2!})e^{x}=\frac{1}{2D}\int x^{2}e^{x}dx\)
Applying uv formula,
\(\int uv\, dx=u\int v\, dx\, -\, \int (u^{l}\int v\, dx)dx\)
\(\\I_{1}=\frac{1}{D^{2}(D-1)^{2}}e^{x}\\=\frac{1}{2D}(e^{x}(x^{2}-e^{x}(2x)+e^{x}(2)))\\=\frac{1}{2}(e^{x}(x^{2}-2x+2)-e^{x}(2(x-1)+e^{x}(2)))\)
\(\\I_{2}=\frac{1}{D^{2}(D-1)^{2}}e^{0x}\\=\frac{1}{D}\int 1\, dx\\=\frac{1}{D}x\)
Again integrating, \(\frac{1}{D}x = \frac{x^{2}}{2!}\)
The general solution is y = \(y_{c}+y_{p}\)
Therefore,\(y=(C_{1}+C_{1}x)e^{0}x+(C_{3}+C_{4}x)e^{x}+\frac{1}{2}(e^{x}(x^{2}-2x+2)-e^{x}(2(x-1)+e^{x}(2)))+\frac{x^{2}}{2!}\).
Solve the given differential equation by undetermined coefficients. y(4) + 2y'' + y = (x - 5)2
Summary:
The solution of the differential equation y(4) + 2y'' + y = (x - 5)2 by undetermined coefficients is \(y=(C_{1}+C_{1}x)e^{0}x+(C_{3}+C_{4}x)e^{x}+\frac{1}{2}(e^{x}(x^{2}-2x+2)-e^{x}(2(x-1)+e^{x}(2)))+\frac{x^{2}}{2!}\).
visual curriculum