Find the length of the curve. r(t) = cos(3t) i + sin(3t) j + 3 ln(cos(t)) k, 0 ≤ t ≤ π/4.
Solution:
Given r(t) = cos(3t) i + sin(2t) j + 3 ln(cos(t)) k
r(t) is a parametric equation of t .
Also if r(t): R→R3 is a vector valued function of a real variable with independent scalar output variables x, y & z
r(t) = {x, y, z}
Where x = cos(3t) , y = sin(3t) and z = 3ln cos(t)
Length of the curve, S = \(\int_{0}^{π/4} \sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2} dt\)
Consider
x = cos(3t) ⇒ dx/dt = -3sin(3t) [derivative of cos(ax) is - asin(ax)]
y = sin(3t) ⇒ dy/dt = 3cos(3t) [derivative of sin(ax) is acos(ax)]
z = 3 ln(cos(t)) ⇒ dz/dt = (3/cos(t)) × (-sin(t)) [by Chain rule]
dz/dt = -3(tant)
(dx/dt)2 + (dy/dt)2 + (dz/dt)2 = (-3sin(3t))2 + (3cos(3t))2 + (-3(tant))2
= 9sin2(3t) + 9cos2(3t) + 9tan2(t)
= 9[sin2(3t) + cos2(3t)] + tan2(t))
= 9(1+ tan2(t))
= 9 sec2(t)
⇒(dx/dt)2 + (dy/dt)2 + (dz/dt)2 = 9 sec2(t)
\(\sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2} dt\)= 3 sect
S = \(\int_{0}^{\pi/4} 3 sec (t) dt\)
But sect integral is ln[sect + tant]
S = 3 ln(sect + tant)]\(_{0}^{π/4}\)
S = 3[ln(sec(π/4) + tan(π/4))] - 3[ln(sec(0) + tan(0))]
S = 3[ln(√2 + 1) - ln(1 + 0)] (Using the trigonometric ratios)
S = 3[ln (√2 +1 )] - 0
S = 3[ln(√2 + 1)]
Find the length of the curve. r(t) = cos(3t) i + sin(3t) j + 3 ln(cos(t)) k, 0 ≤ t ≤ π/4.
Summary:
The length of the curve. r(t) = cos(3t) i + sin(3t) j + 3 ln(cos (t)) k, 0 ≤ t ≤ π / 4 is 3[ln(√2 + 1)]
visual curriculum