Solve 1/5ln((x + 2)5) + 1/2[ln x - ln((x2 + 3x + 2)2)]
Solution:
Given, 1/5ln((x + 2)5) + 1/2[ln x - ln((x2 + 3x + 2)2)]
We have to solve the equation.
First, find the factors of (x2 + 3x + 2)
x2 + 3x + 2 = x2 + 2x + x + 2
=x(x + 2) + 1(x + 2)
= (x + 1)(x + 2)
So, 1/5ln((x + 2)5) + 1/2[ln x - ln((x2 + 3x + 2)2)] becomes 1/5ln((x + 2)5) + 1/2[ln x - ln((x + 1)(x + 2))2]
We know, \(b\, log_{a}=loga^{b}\)
Now, \(\frac{1}{5}ln((x+2)^{5})=ln(((x+2)^{5})^{\frac{1}{5}})\)
Cancelling the common factor,
\(\frac{1}{5}ln((x+2)^{5})=ln(x+2)\)
Similarly, \(\frac{1}{2}[ln(x)-ln((x+1)(x+2))^{2}]=\frac{1}{2}ln(x)-\frac{1}{2}ln((x+1)(x+2))^{2}\)
\(\frac{1}{2}ln(x)-\frac{1}{2}ln((x+1)(x+2))^{2}=[ln(x^{\frac{1}{2}})]-[ln(((x+1)(x+2))^{2})^{\frac{1}{2}}]\)
Cancelling the common factor,
\([ln(x^{\frac{1}{2}})]-[ln(((x+1)(x+2))^{2})^{\frac{1}{2}}]=[ln(x)^{\frac{1}{2}}-ln((x+1)(x+2))]\)
Using the property of logarithms,
\(log_{b}(x)-log_{b}(y)=log_{b}(\frac{x}{y})\)
So,\([ln(x)^{\frac{1}{2}}-ln((x+1)(x+2))]=ln(\frac{x^{\frac{1}{2}}}{((x+1)(x+2))})\)
Now,\(\frac{1}{5}ln((x+2)^{5})+\frac{1}{2}(ln(x)-ln(((x+1)(x+2))^{2})=ln(x+2)+ln(\frac{x^{\frac{1}{2}}}{((x+1)(x+2))})\)
Using the property of logarithms,
\(log_{b}x+log_{b}(y)=log_{b}(xy)\)
So, \(ln(x+2)+ln(\frac{x^{\frac{1}{2}}}{((x+1)(x+2))})=ln[(x+2)(\frac{x^{\frac{1}{2}}}{((x+1)(x+2))})]\)
\(ln[(x+2)(\frac{x^{\frac{1}{2}}}{((x+1)(x+2))})]=ln[\frac{x^{\frac{1}{2}}}{(x+1)}]\)
Therefore, \(\frac{1}{5}ln((x+2)^{5})+\frac{1}{2}[ln(x)-ln((x+1)(x+2))^{2}]=ln[\frac{x^{\frac{1}{2}}}{(x+1)}]\).
Solve 1/5ln((x + 2)5) + 1/2[ln x - ln((x2 + 3x + 2)2)]
Summary:
\(\frac{1}{5}ln((x+2)^{5})+\frac{1}{2}[ln(x)-ln((x+1)(x+2))^{2}]=ln[\frac{x^{\frac{1}{2}}}{(x+1)}]\).
visual curriculum