# The system of a quadratic equation and a linear equation may have how many intersection points?

An equation is a mathematical statement with an 'equal to' symbol between two algebraic expressions that have equal values.

## Answer: The system of a quadratic equation and a linear equation can have either 0, 1, or 2 possible intersection points.

Let us go through the explanation to understand the solution.

**Explanation:**

The quadratic equation needs to be a parabola and a linear equation is a straight line, they may have at most two intersection points. It could also be possible for a straight line and a parabola to have no intersection point, a single point of intersection, but it is not possible to have more than 2 points of intersection.

There are three possible cases:

- No real solution (happens when they never intersect)
- One real solution (when the straight line just touches the quadratic)
- Two real solutions

The graph shows the three different possible solutions of a quadratic and a linear equation.