Write the complex number in the form a + bi. 8(cos 30° + i sin 30°)
Solution:
We have to write the complex form of the given term.
Using the Euler’s Formula,
\(re^{i\theta }=r(cos(\theta )+isin(\theta ))\) --- (1)
Where, \(a=rcos(\theta )\)
\(b=rsin(\theta )\)
So, \(tan(\theta )=\frac{b}{a}\)
From the given expression,
r = 8
\(\theta =30^{\circ}\)
Now, \(a=8(cos30^{\circ})\\=8(\frac{\sqrt{3}}{2})\\a=4\sqrt{3}\)
\(b=8(sin30^{\circ})\\=8(\frac{{1}}{2})\\b=4\)
Substituting the above values in (1)
r(cos(\theta )+isin(\theta ))\) = \(4\sqrt{3}+4i\)
Therefore, the complex number is \(4\sqrt{3}+4i\).
Write the complex number in the form a + bi. 8(cos 30° + i sin 30°)
Summary:
The complex number in the form a + bi 8(cos 30° + i sin 30°) is \(4\sqrt{3}+4i\).
Math worksheets and
visual curriculum
visual curriculum