# (i) Identify the terms and their factors in the following expressions. Show the terms and factors by tree diagrams

(a) x – 3 (b) 1 + x + x^{2 } (c) y – y^{3}

(d) 5xy^{2} + 7x^{2}y (e) – ab + 2b^{2} – 3a^{2}

(ii) Identify terms and factors in the expressions given below:

(a) -4x + 5 (b) -4x + 5y (c) 5y + 3y^{2} (d) xy + 2x^{2}y^{2}

(e) pq + q (f) 1.2ab – 2.4b + 3.6a (g) (3/4)x+1/4

(h) 0.1p^{2} + 0.2q^{2}

**Solution:**

(i)

(a) x - 3

Term = x, - 3 and Factor = x; -3

(b) 1 + x + x^{2}

Term = 1, x, x^{2} and Factor = 1, x, (x,x)

(c) y - y^{3}

Term = y, - y^{3 }and Factor = y, (-1, y, y, y)

(d) 5xy^{2} + 7x^{2}y

Term = 5xy^{2}, 7x^{2}y and Factor = (5, x, y, y), (7, x, x, y)

(e) -ab + 2b^{2} - 3a^{2}

Term = -ab, 2b^{2}, -3a^{2 }and Factor = (-a, b), (2, b, b), (-1, 3, a, a)

(ii) Identification of terms and factors in the expressions given below:

Factors is defined as, numbers we can multiply together to get another number.

Sl.No. |
Expression |
Terms |
Factors |

(a) |
– 4x + 5 | -4x
5 |
-4, x
5 |

(b) |
– 4x + 5y | -4x
5y |
-4, x
5, y |

(c) |
5y + 3y^{2} |
5y
3y |
5, y
3, y, y |

(d) |
xy + 2x^{2}y^{2} |
xy
2x |
x, y
2, x, x, y, y |

(e) |
pq + q | pq
q |
p, q
q |

(f) |
1.2 ab – 2.4 b + 3.6 a | 1.2ab
-2.4b 3.6a |
1.2, a, b
- 1, 2.4, b 3.6, a |

(g) |
(3/4) x + 1/4 | (3/4) x
1/4 |
3/4, x
1/4 |

(h) |
0.1 p^{2} + 0.2 q^{2} |
0.1p^{2}
0.2q |
0.1, p, p
0.2, q, q |

**☛ Check: **NCERT Solutions for Class 7 Maths Chapter 12

**Video Solution:**

## (i) Identify the terms and their factors in the following expressions Show the terms and factors by tree diagrams.(a) x – 3 (b) 1 + x + x²^{ } (c) y – y³ (d) 5xy² + 7x²y (e) – ab + 2b² – 3a² (ii) Identify terms and factors in the expressions given below: (a) -4x + 5 (b) -4x + 5y (c) 5y + 3y²^{ }(d) xy + 2x²y²^{ }(e) pq + q (f) 1.2ab – 2.4b + 3.6a (g) (3/4)x+1/4 (h) 0.1p² + 0.2q²

Maths NCERT Solutions Class 7 Chapter 12 Exercise 12.1 Question 2

**Summary:**

(i) Identifying the terms and their factors in the following expressions shown the terms and factors by tree diagrams is shown above in the solution.(a) x – 3; Term = x, - 3 and Factor = x; -3 (b) 1 + x + x²; Term = 1, x, x^{2} and Factor = 1, x, (x,x) (c) y – y³; Term = y, -y^{3 }and Factor = y, (-y, -y, -y) (d) 5xy² + 7x²y; Term = 5xy^{2}, 7x^{2}y and Factor = (5, x, y, y), (7, x, x, y) (e) – ab + 2b² – 3a²; Term = -ab, 2b^{2}, -3a^{2 }and Factor = (-a, b), (2, b, b), (-3, a, a)

(ii) Identification of terms and factors in the expressions given below: (a) -4x + 5; Terms = -4x and 5 and Factors = x and 5. (b) -4x + 5y; Terms = -4x and 5y ; Factors = -4, x and 5, y (c) 5y + 3y²; Terms = 5y and 3y^{2} Factors 5,y and 3, y, y. (d) xy + 2x²y²; Terms = xy and 2x^{2}y^{2}; Factors= x, y and 2, x, x, y, y. (e) pq + q; Term = pq and q; Factor = p, q and q (f) 1.2ab – 2.4b + 3.6a; Term = 1.2ab, - 2.4b and 3.6a and Factor = 1.2, a, b, −2.4, b and 3.6, a. (g) (3/4)x+1/4; Term = (3/4)x and 1/4 ; Factor = (3/4), x and 1/4 (h) 0.1p² + 0.2q²; Term = 0.1p^{2} and 0.2q^{2};Factor = 0.1, p, p and 0.2, q, q.

**☛ Related Questions:**

- Identify The Numerical Coefficients Of Terms Other Than Constants In The Following I 5 3t2 Ii 1 T T2 T3 Iv 100m 1000n V P2q2 7pq
- A Identify Terms Which Contain X And Give The Coefficient Of X I Y2x Y Ii 13y2 8yx Iii X Y 2 Iv 5 Z Zx V 1 X Xy Vi 12xy2 25 Vii 7x Xy2
- Classify Into Monomials Binomials And Trinomials I 4y 7x Ii Y2 Iii X Y Xy Iv 100 V Ab A B Vi 5 3t Vii 4p2q 4pq2 Viii 7mn Ix Z2 3z 8
- State Whether A Given Pair Of Terms Is Of Like Or Unlike Terms I 1 100 Ii 7x 5 2x Iii 29x 29y Iv 14xy 42yx V 4m2p 4mp2 Vi 12xz 12 X2y2

visual curriculum