# Identify the numerical coefficients of terms (other than constants) in the following expressions:

(i) 5 – 3t^{2} (ii) 1 + t + t^{2} + t^{3 } (iii) x + 2xy + 3y (iv) 100m + 1000n

(v) -p^{2}q^{2} + 7pq (vi) 1.2 a + 0.8 b (vii) 3.14r^{2} (viii) 2(l + b)

(ix) 0.1y + 0.01y^{2}

**Solution:**

Identifying the numerical coefficients of terms (other than constants) in the following expressions:

(i) -3 is the coefficient of t^{2}

(ii) 1,1 and 1 are the coefficients of t, t^{2} and t^{3}

(iii) 1,2 and 3 are the coefficients of x, xy and y

(iv) 100 and 1000 are the coefficients of m and n

(v) -1 and 7 are the coefficients of p^{2}q^{2} and pq

(vi) 1.2 and 0.8 are the coefficients of a and b

(vii) 3.14 is the coefficient of r^{2}

(viii) 2 and 2 are the coefficients of l and b

(ix) 0.1 and 0.01 are the coefficients of y and y^{2}

**☛ Check: **NCERT Solutions Class 7 Maths Chapter 12

**Video Solution:**

## Identify the numerical coefficients of terms (other than constants) in the following expressions: (i) 5 – 3t²^{ }(ii) 1 + t + t² + t³ (iii) x+2xy+3y^{ }(iv) 100m + 1000n (v) -p²q² + 7pq (vi) 1.2 a + 0.8 b (vii) 3.14r²^{ }(viii) 2(l + b) (ix) 0.1y + 0.01y²

Maths NCERT Solutions Class 7 Chapter 12 Exercise 12.1 Question 3

**Summary:**

The numerical coefficients of terms (other than constants) in the following: (i) 5 – 3t^{2 }(ii) 1 + t + t^{2} + t^{3 }(iv) 100m + 1000n (v) -p^{2}q^{2} + 7pq (vi) 1.2 a + 0.8 b (vii) 3.14r^{2 }(viii) 2(l + b) (ix) 0.1y + 0.01y^{2} are(i) -3 (ii) 1,1 and 1 (iii) 1,2 and 3 (iv) 100 and 1000 (v) -1 and 7 (vi) 1.2 and 0.8 (vii) 3.14 (viii) 2 and 2 (ix) 0.1 and 0.01

**☛ Related Questions:**

- A Identify Terms Which Contain X And Give The Coefficient Of X I Y2x Y Ii 13y2 8yx Iii X Y 2 Iv 5 Z Zx V 1 X Xy Vi 12xy2 25 Vii 7x Xy2
- Classify Into Monomials Binomials And Trinomials I 4y 7x Ii Y2 Iii X Y Xy Iv 100 V Ab A B Vi 5 3t Vii 4p2q 4pq2 Viii 7mn Ix Z2 3z 8
- State Whether A Given Pair Of Terms Is Of Like Or Unlike Terms I 1 100 Ii 7x 5 2x Iii 29x 29y Iv 14xy 42yx V 4m2p 4mp2 Vi 12xz 12 X2y2
- Identify Like Terms In The Following A Xy2 4yx2 8x2 2xy2 7y2 11x2 100x 11yx 20x2y 6x2 Y 2xy 3x

visual curriculum