# Simplify: (i) 2 × 10^{3} (ii) 7^{2} × 2^{2} (iii) 2^{3} × 5 (iv) 3 × 4^{4} (v) 0 × 10^{2} (vi) 5^{2} × 3^{3} (vii) 2^{4} × 3^{2} (viii) 3^{2} × 10^{4}

**Solution:**

A larger number can be written using an exponential notation in which there is a base and a smaller raised number called its power or exponent.

Exponent represents how many times the base will be multiplied by itself.

(i) 2 × 10^{3} = 2 × (10 × 10 × 10) = 2 × 1000 = 2000

(ii) 7^{2} × 2^{2} = (7 × 7) × (2 × 2) = 49 × 4 = 196

(iii) 2^{3} × 5 = (2 × 2 × 2) × 5 = 8 × 5 = 40

(iv) 3 × 4^{4} = 3 × (4 × 4 × 4 × 4) = 3 × 256 = 768

(v) 0 × 10^{2} = 0 × 10 × 10 = 0

(vi) 5^{2} × 3^{3} = (5 × 5) × (3 × 3 × 3) = 25 × 27 = 675

(vii) 2^{4} × 3^{2} = (2 × 2 × 2 × 2) × (3 × 3) = 16 × 9 = 144

(viii) 3^{2} × 10^{4} = (3 × 3) × (10 × 10 × 10 × 10) = 9 × 10000 = 90000

**☛ Check: **NCERT Solutions Class 7 Maths Chapter 13

**Video Solution:**

## Simplify: (i) 2 × 10³^{ }(ii) 7² × 2²^{ }(iii) 2³ × 5 (iv) 3 × 4⁴^{ }(v) 0 × 10²^{ }(vi) 5² × 3³^{ }(vii) 2⁴ × 3²^{ }(viii) 3² ×10⁴

Maths NCERT Solutions Class 7 Chapter 13 Exercise 13.1 Question 6

**Summary:**

The values calculated on simplifying the expressions are: (i) 2 × 10^{3 }= 2000 , (ii) 7^{2} × 2^{2}= 196, (iii) 2^{3} × 5 = 40 , (iv) 3 × 4^{4} = 768 , (v) 0 × 10^{2} = 0 , (vi) 5^{2} × 3^{3} = 675, (vii) 2^{4} × 3^{2} = 144, (viii) 3^{2} ×10^{4} = 90000

**☛ Related Questions:**

- Simplify I 43 Ii 3 X 23 Iii 32 X 52 Iv 23 X 103
- Compare The Following Numbers I 27 X 1012 15 X 108 Ii 4 X 1014 3 X 1017
- Express Each Of The Following Numbers Using Exponential Notation I 512 Ii 343 Iii 729 Iv 3125
- Identify The Greater Number Wherever Possible In Each Of The Following I 43 Or 34 Ii 53 Or 35 Iii 28 Or 82 Iv 1002 Or 2100 V 210 Or 102

visual curriculum