Trigonometry Ratios of Complementary Angles

Trigonometry Ratios of Complementary Angles

Introduction:

Observe the following figure:

Complementary angles of right-angle

 

Here, in \(\Delta ABC\), the sum of \(\angle A\) and \(\angle C\) is \(90^\circ \),
So, we can say that \(\angle A\) and \(\angle C\) are complementary angles.

Now, let's see the trigonometric ratios of these complementary angles.


Trigonometry Ratios of Complementary Angles:

Consider \(\Delta ABC\) again,

Complementary angles of right-angle

If \(\angle A = \theta \) then, \(\angle B = 90^\circ  - \theta \).

Note that \(\sin \theta = \frac{{BC}}{{AC}}\) and \(\cos\; ({90^\circ} - \theta )\) is also \(\frac{{BC}}{{AC}}\). Thus, for any angle \(\theta \),

\[\sin \theta = \cos \left( {{{90}^\circ} - \theta } \right)\]

Similarly, we observe the following relations involving complementary angles:

\[\begin{align}&\cos \theta = \sin ({90^\circ } - \theta )\; =\; \frac{{AB}}{{AC}}\\&\tan \theta = \cot ({90^\circ} - \theta ) \;=\; \frac{{BC}}{{AB}}\\&\sec \theta = \text{cosec}({90^\circ } - \theta ) = \frac{{AC}}{{AB}}\\&\text{cosec}\;\theta = \sec ({90^\circ } - \theta ) = \frac{{AC}}{{BC}}\\&\cot \theta = \tan ({90^\circ } - \theta ) = \frac{{AB}}{{BC}}\end{align}\]

We see that the following pairs of trigonometric ratios satisfy this complementary behaviour:

  • sine & co-sine \(\left( {\sin {\text{& }}\cos } \right)\)
  • tangent & co-tangent \(\left( {\tan {\text{& }}\cot } \right)\)
  • secant & co-secant \(\left( {\sec {\text{& cosec}}} \right)\)

Note: For any of these pairs, one of the two trigonometric ratios of \(\left( {{{90}^\circ } - \theta } \right)\) will be the other trigonometric ratios of \(\theta \).

This complementary behavior of trigonometric ratios has a wide range of applications, as the following examples will show.


Solved Examples:

Example 1: Find the value of:

\[E = \sin {37^\circ }\cos {53^\circ } + \cos {37^\circ }\sin {53^\circ }\]

Solution: We note that,

\[\begin{align}&\sin {53^\circ } = \cos ({90^\circ } - {53^\circ }) = \cos {37^\circ }\\&\cos {53^\circ } = \sin ({90^\circ } - {53^\circ }) = \sin {37^\circ }\end{align}\]

Thus,

\[\begin{align}\boxed {E = {\sin ^2}{37^\circ } + {\cos ^2}{37^\circ } = 1}\\ \end{align}\]

This particular problem could also have been solved using the following sum identity:

\[\sin \;(A + B) = sin\;A\;cos\;B + \cos A\sin B\]

Thus,

\[E = \sin \;({37^\circ } + {53^\circ }) = \sin {90^\circ } = 1\]

yesChallenge 1: Find the value of:

\[E = \tan {46^\circ }\cot {44^\circ } + \cot {46^\circ }\tan {44^\circ }\]

Tip: Use a similar approach as in example-1.


Example 2: Evaluate the value of the following expression:

\[E = \frac{{\cos {{58}^\circ }}}{{\sin {{32}^\circ }}} + \frac{{\sin {{22}^\circ }}}{{\cos {{68}^\circ }}} - \frac{{\cos {{38}^\circ }\text {cosec}{{52}^\circ }}}{{\tan {{18}^\circ  }\tan {{35}^\circ }\tan {{72}^\circ }\tan {{55}^\circ }}}\]

Solution: This expression may look complicated but is actually pretty simple to evaluate. For the first two terms, we note that

\[\begin{array}{l} \cos {58^\circ } = \sin \left( {{{90}^\circ } - {{58}^\circ }} \right) = \sin {32^\circ }\\ \sin {22^\circ } = \cos \left( {{{90}^\circ } - {{22}^\circ }} \right) = \cos {58^\circ } \end{array}\]

Thus the value of each of the first  two terms is 1.

Now, let’s come to the third term. The numerator is,

\[\begin{align}&\cos {38^\circ }{\mathop{\rm cosec}\nolimits} {52^\circ } = \frac{{\cos {{38}^\circ }}}{{\sin {{52}^\circ }}}\\&\qquad\qquad\qquad \;\;= \frac{{\cos {{38}^\circ }}}{{\cos \left( {{{90}^\circ } - {{52}^\circ }} \right)}}\\ &\qquad\qquad\qquad\;\;= \frac{{\cos {{38}^\circ }}}{{\cos {{38}^\circ }}} = 1\end{align}\]

The denominator is,

\[\begin{align}&\tan {18^\circ }\tan {35^\circ }\tan {72^\circ }\tan {55^\circ }\\& = \tan {18^\circ }\tan {35^\circ }\cot \left( {{{90}^\circ } - {{72}^\circ }} \right)\cot \left( {{{90}^\circ } - {{55}^\circ }} \right)\\ &= \tan {18^\circ }\tan {35^\circ }\cot {18^\circ }\cot {35^\circ }\\& = \left( {\tan {{18}^\circ }\cot {{18}^\circ }} \right)\left( {\tan {{35}^\circ }\cot {{35}^\circ }} \right)\\ &= 1 \times 1 = 1\end{align}\]

Thus,

\[\boxed {E = 1 + 1 - \frac{1}{1} = 1}\]


Example 3: Find the value of the following expression:

\[E = \tan {1^\circ }\tan {2^\circ }\tan {3^\circ }.......\tan {89^\circ }\]

Solution: \(E\)  is a product of 89 terms. If we consider the product of the first and the last term, we have:

\[\begin{align}&\tan {1^\circ }\tan {89^\circ }\; = \tan {1^\circ }\cot \left( {{{90}^\circ } - {{89}^\circ }} \right)\\&\qquad\qquad\qquad = \tan {1^\circ }\cot {1^\circ }\;\;= 1\end{align}\]

Similarly, take the product of the second and second last terms:

\[\tan {2^\circ }\tan {88^\circ } = \tan {2^\circ }\cot {2^\circ } = 1\]

Thus, we can group the terms in \(E\) into pairs, each of whose product is 1.

One term will still be left: \(\tan {45^\circ }\). But the value of this term is also 1. For this, please go through the trigonometric ratios of specific angles.

Thus,

\[\boxed {E=1}\]

yesChallenge 2: Find the value of the following expression:

\[E = \tan {48^\circ }\tan {23^\circ }\tan {42^\circ }\tan {67^\circ }\]

Tip: Pair up complementary angles.


Example 4: If \(\tan 2A = \cot \left( {A - {{21}^\circ }} \right)\), where \(2A\) is an acute angle, find \(A\).

Solution: We have,

\[\begin{align}\tan 2A &= \tan \left( {{{90}^\circ } - \left( {A - {{21}^\circ }} \right)} \right)\\ \qquad\quad&= \tan \left( {{{111}^\circ } - A} \right)\\ \Rightarrow 2A &= {111^\circ } - A\end{align}\]

\[ \Rightarrow \boxed{A = 37^\circ }\]

yesChallenge 3: If \(\sin 3A = \cos \left( {A - 26^\circ } \right)\), where \(3A\) is an acute angle, find the value of \(A\).

Tip: Use a similar approach as in example-4.


Example 5 : In any right \(\Delta ABC\), prove that

\[\sin \left( {\frac{{B + C}}{2}} \right) = \cos \frac{A}{2}\]

Solution: We have,

\[\begin{align}LHS=\sin \left( {\frac{{B + C}}{2}} \right) &= \sin \left( {\frac{{{{180}^\circ } - A}}{2}} \right)\\ \qquad\qquad\qquad&= \sin \left( {{{90}^\circ} - \frac{A}{2}} \right)\\ \qquad\qquad\qquad&= \cos \frac{A}{2} = RHS\end{align}\]

Hence Proved.


What are complementary angles in trigonometry?

  • complementary angles are the set of two angles such that their sum is equal to 90°

How do you calculate sine of an angle?

  • To calculate sin of an angle for any right angled triangle, remember the pneumonic SOH-CAH-TOA. It stands for: Sine equals Opposite over Hypotenuse (SOH), Cosine equals Adjacent over Hypotenuse (CAH) and Tangent equals Opposite over Adjacent (TOA).

How are the tangents of complementary angles related?

  • Tangent of any angle = cotangent of its complementary angle. Corollary: Complementary Angles: Two angles are said to be complementary if their sum is 90°. Thus θ and (90° - θ) are complementary angles.

What are compound angles?

  • A compound angle is an algebraic sum of two or more angles. We use trigonometric identities to connote compound angles through trigonometric functions.

What are the trigonometric formulas?

  • Trigonometry is a branch of mathematics concerned with specific functions of angles and their application to calculations. The six trigonometric functions or formulas are sine (sin), cosine (cos), secant (sec), co-secant (cosec), tangent (tan) and co-tangent (cot)
Download SOLVED Practice Questions of Trigonometry Ratios of Complementary Angles for FREE
Trigonometry
Grade 10 | Answers Set 1
Trigonometry
Grade 9 | Questions Set 1
Trigonometry
Grade 10 | Questions Set 1
Trigonometry
Grade 9 | Answers Set 1
More Important Topics
Numbers
Algebra
Geometry
Measurement
Money
Data
Trigonometry
Calculus
More Important Topics
Numbers
Algebra
Geometry
Measurement
Money
Data
Trigonometry
Calculus
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school