# Octagon Calculator

Octagon is defined as a two-dimensional geometrical figure and its name is derived from Greek words "octa" which meant "eight" and "gon" which meant "angles" and it is an eight-sided polygon.

## What is Octagon Calculator?

'Cuemath's Octagon Calculator' is an online tool that helps to calculate the area and perimeter of an octagon for a given length of the side. Cuemath's online Octagon Calculator helps you to calculate the area and perimeter of an octagon within a few seconds.

Note: Enter the values up to 4 digits.

## How to Use Octagon Calculator?

Please follow the steps below on how to use the calculator:

**Step 1:**Choose a drop-down list to calculate the area and perimeter of an octagon.**Step 2:**Enter the length of the side in the given input box.**Step 3:**Click on the**"Calculate"**button to find the area and perimeter of an octagon.**Step 4:**Click on the**"Reset"**button to clear the fields and find the area and perimeter for different values.

## How to Find Area and Perimeter of Octagon?

The **area of an octagon** is defined as the amount of space enclosed within the boundary of an octagon. It is measured in square units. The formula to calculate the area of an octagon is given by

** Area of Octagon = 2s ^{2}(1+√2) = 4.828 s^{2} square units**

Where,'s' is the length of the side of an octagon.

The** perimeter of an octagon** is defined as the sum of all lengths of the sides of an octagon. The formula to calculate the perimeter of an octagon is:

**The perimeter of an octagon = sum of all sides of octagon = 8 × s**

Where,'s' is the length of the side of an octagon.

**Solved Example:**

Find the area and perimeter of an octagon whose length of a side is 8 units.

**Solution:**

Area of octagon = 2s^{2}(1+√2) = 4.828 * s^{2}

= 4.828 × 8^{2}

= 4.828 × 64

= 309.02 square units

The perimeter of an octagon = 8 × s

= 8 × 8

= 64 units

Similarly, you can try the calculator to find the area and perimeter of an octagon for the following:

- Length of the side = 7 units
- Length of the side = 12 units