# Leibnitz Integral Rule

Go back to  'Definite Integration'

(15) Consider a function in two variables x and y, i.e.,

$z = f(x,y)$

Let us consider the integral of z with respect to x, from a to b, i.e.,

$I = \int\limits_a^b {f(x,y)dx}$

For this integration, the variable is only x and not y. y is essentially a constant for the integration process. Therefore, after we have evaluated the definite integral and put in the integration limits, y will still remain in the expression of I. This means that I is a function of y.

$\Rightarrow \,\,\,\,\,\,\,I(y) = \int\limits_a^b {f(x,y)dx} \,\,\,\,\,\,\,\,\,...(1)$

Our 15th property says that the relation (1) can be differentiated with respect to y as follows:

\begin{align}&I'(y) = \frac{d}{{dy}}\left( {\int\limits_a^b {f(x,y)} \,dx} \right)\\\,\,\,\,\,\,\,\,\,\,\,\, &\qquad= \int\limits_a^b {\frac{{\partial f(x,y)}}{{\partial y}}dx} \end{align}

where \begin{align}\frac{{\partial f(x,y)}}{{\partial y}}\end{align} stands for the partial derivative of $$f(x,y)$$ with respect to y, that is , the derivative of $$f(x,y)$$ w.r.t. y, treating x as a constant

Let us see the justification for this property:

\begin{align}&I'(y) = \mathop {\lim }\limits_{h \to 0} \frac{{I(y + h) - I(y)}}{h}\\\,\,\,\,\,\,\,\,\,\,\,\, &\qquad= \mathop {\lim }\limits_{h \to 0} \frac{{\int\limits_a^b {f(x,y + h)} dx - \int\limits_a^b {f(x,y)dx} }}{h}\\\,\,\,\,\,\,\,\,\,\,\,\, &\qquad= \int\limits_a^b {\left\{ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{f(x,y + h) - f(x,y)}}{h}} \right)} \right\}dx} \\\,\,\,\,\,\,\,\,\,\,\,\, &\qquad= \int\limits_a^b {\frac{{\partial f(x,y)}}{{\partial y}}dx} \end{align}

This property turns out to be very useful in certain cases.

Example –22

Evaluate  \begin{align}I = \int\limits_0^1 {\frac{{{x^k} - 1}}{{\ln x}}dx} \end{align}

Solution: Observe that I will be a function of k. Instead of carrying out direct integration, we use property -15:

\begin{align}&\frac{{dI(k)}}{{dk}} = \int\limits_0^1 {\frac{\partial }{{\partial k}}\left( {\frac{{{x^k} - 1}}{{\ln x}}} \right)dx} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\, &\qquad\;\;\;= \int\limits_0^1 {\frac{{{x^k}\ln x}}{{\ln x}}dx} \,\,\,\,\,\,\,\,\,\,\,\,\\\,\,\,\,\,\,\,\,\,\,\,\,\, &\qquad\;\;\;= \int\limits_0^1 {{x^k}dx} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\, &\qquad\;\;\;= \frac{1}{{k + 1}}\end{align}

Thus,

$\,dI(k) = \frac{{dk}}{{k + 1}}$

Integrating both sides, we obtain

$I(k) = \ln (k + 1) + C\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(1)$

To obtain C, note from the original definition of I that I (0) = 0. Using this in (1), we obtain

\begin{align}&\,\,\,\,\,\,\,\,\,\,0 = \ln 1 + C\\\, &\Rightarrow \,\,\,\,C = 0\end{align}

Thus,

$I(k) = \ln (k + 1)$

Observe again carefully the indirect route that property-15 offered us to solve this integral.

Example –23

Evaluate \begin{align}I = \int\limits_0^1 {\frac{{{x^\alpha } - {x^\beta }}}{{\ln x}}dx}\end{align}

Solution: We again try to use property -15 to solve this integral. Let us treat I as a function of a . Therefore,

$I(\alpha ) = \int\limits_0^1 {\frac{{{x^\alpha } - {x^\beta }}}{{\ln x}}dx}$

Notice that

$I(\beta ) = \int\limits_0^1 {\frac{{{x^\beta } - {x^\beta }}}{{\ln x}}dx = 0}$

Now, using property-15 we obtain:

\begin{align}&\,\,\,\,\,\,\,\,\,\,\,\,\frac{{dI(\alpha )}}{{d\alpha }} = \int\limits_0^1 {\frac{\partial }{{\partial \alpha }}\left( {\frac{{{x^\alpha } - {x^\beta }}}{{\ln x}}} \right)dx} \\&\qquad\qquad\;\;\;\;= \int\limits_0^1 {\frac{{{x^\alpha }\ln x}}{{\ln x}}dx} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, &\qquad\qquad\quad\;= \frac{1}{{\alpha + 1}}\end{align}

Thus,                                                                            $$dI(\alpha ) = \frac{{d\alpha }}{{\alpha + 1}}$$

$\Rightarrow \,\,\,\,\,\,I(\alpha ) = \ln (\alpha + 1) + C$

Using $$I(\beta ) = 0$$ above, we obtain

\begin{align}&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,I(\beta ) = 0 = \ln (\beta + 1) + C\\ &\Rightarrow \,\,\,\,\,\,\,\,C = 0 - \ln (\beta + 1) = - \ln \left( {\beta + 1} \right)\end{align}

Thus,

\begin{align}&I(\alpha ) = \ln (\alpha + 1) - \ln (\beta + 1)\\\,\,\,\,\,\,\,\,\,\,\, &\qquad= \ln \left( {\frac{{\alpha + 1}}{{\beta + 1}}} \right)\end{align}

This is the required integral!