# Parametric Form of Parabolas

PARAMETRIC FORM OF $${y^2} = 4ax$$ : The parabola $${y^2} = 4ax$$ is a lot of times specified not in the standard x – y form of but instead in a parametric form, i.e., in terms of a parameter, say t.

The equation $${y^2} = 4ax$$ can be equivalently written in parametric form

$x = a{t^2},\,y = 2at$

This is easily verifiable by substitution. Thus, for any value of t, the point $$\left( {a{t^2},{\rm{ }}2at} \right)$$will always lie on the parabola $${y^2} = 4ax$$ Different values of referred to as simply the point give rise to different points on the parabola.

The point $$\left( {a{t^2},{\rm{ }}2at} \right)$$ is many times referred to as simply the point t.

Example – 6

From a point t on $${y^2} = 4ax$$ a focal chord is drawn. Find the other end-point of this chord.

Solution: Let the other end-point be the point $${t_1}$$. Thus, the co-ordinates of the two ends of the chord are$$\left( {a{t^2},{\rm{ }}2at} \right)$$ and $$(at_1^2,\,\,2a{t_1})$$ .

The equation of this chord is therefore

$\frac{{y - 2at}}{{x - a{t^2}}} = \frac{{2at - 2a{t_1}}}{{a{t^2} - at_1^2}} \qquad \qquad \dots\left( 1 \right)$

Since this chord is a focal chord, the coordinates of F, i.e. (a, 0) must satisfy (1)

\begin{align}&\Rightarrow \qquad \frac{{ - 2at}}{{a - a{t^2}}} = \frac{{2a(t - {t_1})}}{{a({t^2} - t_1^2)}}\\ &\Rightarrow \qquad \frac{{ - t}}{{1 - {t^2}}} = \frac{1}{{t + {t_1}}}\\&\Rightarrow \qquad - {t^2} - t{t_1} = 1 - {t^2}\\ &\Rightarrow \qquad \fbox{$${tt_1}$$ = - 1}\end{align}

This very widely used result simply states that the product of the two end-points $$t{\rm{ }}\;\;and\;\;{\rm{ }}{t_1}$$ of any focal chord will be –1.

Example – 7

Let O be the origin and AB be any focal chord of the parabola $${y^2} = 4ax.$$ A is the point t. Find

(a) the minimum area of $$\Delta OAB$$

(b) the locus of the centroid of $$\Delta OAB$$

Solution: Since AB is a focal chord, the point B is \begin{align} - \frac{1}{t}\end{align} . Thus, the co-ordinates of A and B are $$\left( {a{t^2},{\rm{ }}2at} \right)$$ and \left( {\begin{align}\frac{a}{{{t^2}}},\,\, - \frac{{2a}}{t}\end{align}} \right) respectively.

\begin{align}(a) \;\;{\rm{area}}\;(\Delta OAB){\rm{ }} &= \frac{1}{2}{\mkern 1mu} {\mkern 1mu} \left| {\begin{array}{*{20}{c}} {a{t^2}\;\;\;\frac{a}{{{t^2}}}\;\;\;0}\\ {2at\;\;\; - \frac{{2a}}{t}\;\;\;0}\\ {1\;\;\;1\;\;\;1} \end{array}} \right| &\rm{(Expanding\,along\,C3)}\\&= \frac{1}{2}\left\{ { - 2{a^2}t - \frac{{2{a^2}}}{t}} \right\}\\&= - {a^2}\left\{ {t + \frac{1}{t}} \right\}\end{align}

From calculus, we can easily deduce that the magnitude of t + \begin{align}\frac{1}{t}\end{align} is minimum when $$t = \pm 1$$ the minimum magnitude is hence 2: Thus, the minimum area of $$\Delta OAB$$ is $$2{a^2}$$. This occurs when AB is the LR, as might have been expected by symmetry.

(b) Let (h, k) be the co-ordinates of the centroid of $$\Delta OAB$$ .

We have,

\begin{align}&\qquad h = \frac{{a{t^2} +\begin{align} \frac{a}{{{t^2}}}\end{align} + 0}}{3},k = \frac{{2at - \begin{align}\frac{{2a}}{t}\end{align} + 0}}{3}\\ &\Rightarrow \quad {t^2} + \frac{1}{{{t^2}}} = \frac{{3h}}{a},t - \frac{1}{t} = \frac{{3k}}{{2a}}\end{align}

Squaring the second relation, we obtain

${t^2} + \frac{1}{{{t^2}}} - 2 = \frac{{9{k^2}}}{{4{a^2}}}$

Using the first relation in this,

\begin{align}& \qquad \frac{{3h}}{a} - 2 = \frac{{9{k^2}}}{{4{a^2}}}\\\\&\Rightarrow \quad12ah - 8{a^2} = 9{k^2}\\\\&\Rightarrow \quad 4a\left( {h - \frac{{2a}}{3}} \right) = 3{k^2}\end{align}

We now use (x, y) instead of ( h, k); the locus of the centroid is

$3{y^2} = 4a\left( {x - \frac{{2a}}{3}} \right)$