from a handpicked tutor in LIVE 1-to-1 classes
Find the arc length function for the curve y = 2x3/2 with starting point P(16, 128)?
Solution:
Given, y = \(2x^{\frac{3}{2}}\)
Starting point P(16, 128)
Differentiating with respect to x,
dy/dx = d(\(2x^{\frac{3}{2}}\))/dx
dy/dx = 2(3/2)\(x^{\frac{1}{2}}\)
dy/dx = 3\(x^{\frac{1}{2}}\) --- (1)
The arc length can be found by using the formula,
\(L=\int_{x_{0}}^{t}\sqrt{[1+(\frac{dy}{dx})^2]dx}\)
Putting the value of dy/dx in the formula,
\(L=\int_{1}^{t}\sqrt{[1+(3x^{\frac{1}{2}})^2]dx}\)
\(L=\int_{1}^{t}\sqrt{(1+9x)dx}\)
Let 1 + 9x = z
9dx = dz
dx = dz/9
At x = 16,
z = 1 + 9(16)
z = 1 + 144
z = 145
At x = t,
z = 1 + 9t
Putting the value of z and dz in the above equation, we get
\(L=\int_{145}^{1+9t}\frac{z^{\frac{1}{2}}}{9}\, dz\)
\(L=[\frac{z^{\frac{3}{2}}}{9.\frac{3}{2}}]_{145}^{1+9t}\)
\(L=\frac{2}{27}[z^{\frac{3}{2}}]_{145}^{1+9t}\)
\(L=\frac{2}{27}[(1+9t)^{\frac{3}{2}}-(145)^{\frac{3}{2}}]\)
Therefore, the arc length of the given curve is \(L=\frac{2}{27}[(1+9t)^{\frac{3}{2}}-(145)^{\frac{3}{2}}]\)
Find the arc length function for the curve y = 2x3/2 with starting point P(16, 128)?
Summary:
The arc length function for the curve y = 2x3/2 with starting point P(16, 128) is \(L=\frac{2}{27}[(1+ 9t)^{\frac{3}{2}}-(145)^{\frac{3}{2}}]\)
visual curriculum