from a handpicked tutor in LIVE 1-to-1 classes
Find sin x/2, cos x/2, and tan x/2 in each of the following: sin x = 1/4, x in quadrant II
Solution:
Since x lies in quadrant II i.e. π/2 < x < π
Therefore, π/4 < x/2 < π/2
Hence, sin x/2, cos x/2, and tan x/2 all are positive as x/2 lies in quadrant I.
It is given that sin x = - 1/4
By one of the trigonometric identities,
cos2x = 1 - sin2x
= 1 - (-1/4)2
= 1 - 1/16
= 15/16
cos x = ±√(15/16)
Since, x lies in quadrant II so cos x is negative
So, cos x = -√(15/16)
cos 2(x/2) = -√(15/16)
2cos2(x/2) - 1 = -√(15/16)
2cos2x/2 = 1 - (√15 / 4)
2cos2x/2 = [4 -√15] / 4
cos2x/2 = [4 -√15] / 8
cos x/2 = ±√[{4 -√15} / 8]
Since cos x/2 lies in quadrant I and positive so,
cos x/2 = √[{4 -√15} / 8]
multiplying and dividing the fraction inside the square root by 2,
cos x/2 = √[8 -2√15] / 4
Now, sin2x/2 = 1 - cos2x/2 [Because sin2A + cos 2A = 1]
= 1 - (√[8 -2√15] / 4)2
= 1 - [8 -2√15] / 16
= (16 - [8 + 2√15]) / 16
= [8 + 2√15] / 16
sin x/2 = ± √([8 + 2√15] / 16)
Since sin x/2 lies in quadrant I and positive so, sin x/2 = √[8 + 2√15] / 4
Now, tan x/2 = [sin x/2] / [cos x/2]
= (√[8 + 2√15] / 4) / (√[8 -2√15] / 4)
= √[(4 + √15) / (4 - √15)]
Rationalizing the denominator,
= √[(4 + √15) / (4 - √15)] × √[(4 + √15) / (4 + √15)]
= √[(4 + √15)2 / 16 - 15]
= 4 + √15
NCERT Solutions Class 11 Maths Chapter 3 Exercise ME Question 10
Find sin x/2, cos x/2, and tan x/2 in each of the following: sin x = 1/4, x in quadrant II
Summary:
When sin x = 1/4, x in quadrant II, sin x/2 = √[8 + 2√15] / 4, cos x/2 = √[8 - 2√15] / 4, and tan x/2 = 4 + √15.
visual curriculum